plot.LCplfm {plfm} | R Documentation |
plot parameters in LCplfm
object
Description
Plot method to visualize the parameters of latent class probabilistic feature models with different numbers of features/classes.
Usage
## S3 method for class 'LCplfm'
plot(x, feature=1, class=0, element="object", cexsymb=1, cexlabel=1,
minpositionlabel = -1, positionlabel = -0.8, xlegend = "topright",
ylegend=NULL, x.intersplegend=1, y.intersplegend=1, ...)
Arguments
x |
Latent class probabilistic feature model object returned by |
feature |
Latent feature for which parameters are visualized. |
class |
Latent class for which parameters are visualized. When the model contains class-specific object- or attribute parameters, |
element |
Object parameters are plotted if |
cexsymb |
Size of symbol used for plotting points. |
cexlabel |
Size of object- or attribute labels in plot. |
minpositionlabel |
Value smaller than 0 that defines space for plotting object- or attribute labels. |
positionlabel |
Value between |
xlegend , ylegend |
The x and y co-ordinates to be used to position the legend. They can be specified by keyword or in any way which is accepted by xy.coords: See "Details" of legend. |
x.intersplegend |
Character interspacing factor for horizontal (x) spacing in legend. |
y.intersplegend |
Character interspacing factor for vertical (y) line distances in legend. |
... |
Further arguments are ignored. |
Examples
## Not run:
# example 1: analysis on determinants of anger-related behavior
# load anger data
data(anger)
# compute 5 runs of disjunctive latent class probabilistic feature model
# with 4 features and 2 latent classes
# assume constant situation classification per person
# and class-specific situation parameters (i.e. model=1)
anger.m1<-LCplfm(data=anger$data,F=4,T=2,maprule="disj",
M=5,emcrit1=1e-3,emcrit2=1e-8,model=1)
# visualize object and attribute parameters
# of both classes per feature in one figure
par(mfrow=c(2,2),pty="s")
plot(anger.m1,element="attribute",feature=1, main="Feature 1",
minpositionlabel=-2, positionlabel=-1)
plot(anger.m1,element="attribute",feature=2, main="Feature 2",
minpositionlabel=-2, positionlabel=-1)
plot(anger.m1,element="attribute",feature=3, main="Feature 3",
minpositionlabel=-2, positionlabel=-1)
plot(anger.m1,element="attribute",feature=4, main="Feature 4",
minpositionlabel=-2, positionlabel=-1)
par(mfrow=c(2,2),pty="s")
plot(anger.m1,element="object",feature=1,main="Feature 1",
minpositionlabel=-1.5, positionlabel=-1, y.intersplegend=0.7)
plot(anger.m1,element="object",feature=2,main="Feature 2",
minpositionlabel=-1.5, positionlabel=-1, y.intersplegend=0.7)
plot(anger.m1,element="object",feature=3,main="Feature 3",
minpositionlabel=-1.5, positionlabel=-1, y.intersplegend=0.7)
plot(anger.m1,element="object",feature=4,main="Feature 4",
minpositionlabel=-1.5, positionlabel=-1, y.intersplegend=0.7)
# compute 5 runs of disjunctive latent class probabilistic feature model
# with 2 features and 2 latent classes
# assume constant situation classification per person
# and class-specific situation and behavior parameters (i.e. model=3)
anger.m3<-LCplfm(data=anger$data,F=2,T=2,maprule="disj",
M=5,emcrit1=1e-3,emcrit2=1e-8,model=3)
# visualize object and attribute parameters of feature 1,2
# for class 1
par(mfrow=c(2,2))
plot(anger.m3,element="attribute",feature=1, class=1,main="Feature 1, class 1",
minpositionlabel=-2, positionlabel=-1)
plot(anger.m3,element="attribute",feature=2, class=1,main="Feature 2, class 1",
minpositionlabel=-2, positionlabel=-1)
plot(anger.m3,element="object",feature=1, class=1,main="Feature 1, class 1",
minpositionlabel=-2, positionlabel=-1)
plot(anger.m3,element="object",feature=2, class=1,main="Feature 2, class 1",
minpositionlabel=-2, positionlabel=-1)
# visualize object and attribute parameters of feature 1,2
# for class 2
par(mfrow=c(2,2))
plot(anger.m3,element="attribute",feature=1, class=2,main="Feature 1, class 2",
minpositionlabel=-1.7, positionlabel=-1, y.intersplegend=0.7)
plot(anger.m3,element="attribute",feature=2, class=2,main="Feature 2, class 2",
minpositionlabel=-1.7, positionlabel=-1, y.intersplegend=0.7)
plot(anger.m3,element="object",feature=1, class=2,main="Feature 1, class 2",
minpositionlabel=-1.7, positionlabel=-1, y.intersplegend=0.7)
plot(anger.m3,element="object",feature=2, class=2,main="Feature 2, class 2",
minpositionlabel=-1.7, positionlabel=-1, y.intersplegend=0.7)
## End(Not run)