theta.estimates {pleLMA} | R Documentation |
Computes estimates of theta (values on latent trait(s)) for all LMA models
Description
The final estimates of the item scale values and the conditional covariance matrix (i.e, Phi.mat) are used to compute values on latent traits for each individual or case. The estimated thetas are the (conditinal) mean values of response patterns. The correlations between the estimated thetas equal the marginal correlations.
Usage
theta.estimates(inData, model.fit)
Arguments
inData |
Matrix of response patterns |
model.fit |
Object containing output from running ple.lma |
Value
theta.est A person by trait matrix of values on the latent traits
Examples
data(dass)
inData <- dass[1:250,c("d1", "d2", "d3", "a1","a2","a3","s1","s2","s3")]
inTraitAdj <- matrix(1, nrow=1, ncol=1)
inItemTraitAdj <- matrix(1, nrow=9, ncol=1)
r1 <- ple.lma(inData, model.type="rasch", inItemTraitAdj, inTraitAdj)
theta.r1 <- theta.estimates(inData, r1)
g1 <- ple.lma(inData, model.type="gpcm", inItemTraitAdj, inTraitAdj)
theta.g1 <- theta.estimates(inData, g1)
n1 <- ple.lma(inData, model.type="nominal", inItemTraitAdj,inTraitAdj)
theta.n1 <- theta.estimates(inData, n1)
[Package pleLMA version 0.2.1 Index]