sim.ltrc {plac} | R Documentation |
Generate left-truncated (and right-cencored) data from the Cox model.
Description
Various baseline survival functions and truncation distribution are
available. Censoring rate can be designated through tuning the parameter
Cmax
; Cmas = Inf
means no censoring.
Usage
sim.ltrc(
n = 200,
b = c(1, 1),
Z.type = c("C", "B"),
time.dep = FALSE,
Zv.depA = FALSE,
A.depZ = FALSE,
distr.T = "weibull",
shape.T = 2,
scale.T = 1,
meanlog.T = 0,
sdlog.T = 1,
distr.A = "weibull",
shape.A = 1,
scale.A = 5,
p.A = 0.3,
b.A = c(0, 0),
Cmax = Inf,
fix.seed = NULL
)
Arguments
n |
the sample size. |
b |
a numeric vector for true regression coefficients. |
Z.type |
a vector indicating the type of the time-invariant covariates;
|
time.dep |
logical, whether there is the time-dependent covariate (only one indicator function Zv = I(t >= zeta) is supported); the default is FALSE. |
Zv.depA |
logical, whether the time-dependent covariate |
A.depZ |
logical, whether the truncation times depends on the covariate Z. |
distr.T |
the baseline survival time (T*) distribution ("exp" or "weibull"). |
shape.T |
the shape parameter for the Weibull distribution of T*. |
scale.T |
the scale parameter for the Weibull distributiof of T*. |
meanlog.T |
the mean for the log-normal distribution of T*. |
sdlog.T |
the sd for the log-normal distribution of T*. |
distr.A |
the baseline truncation time (A*) distribution: either of
|
shape.A |
the shape parameter for the Weibull distribution of A*. |
scale.A |
the scale parameter for the Weibull distribution of A*. |
p.A |
the success probability for the binomial distribution of A*. |
b.A |
the vector of coefficients for the model of A on the covariates. |
Cmax |
the upper bound of the uniform distribution of the censoring time (C). |
fix.seed |
an optional random seed for simulation. |
Value
a list with a data.frame containing the biased sample of
survival times (Ys
) and truncation times (As
),
the event indicator (Ds
) and the covariates (Zs
);
a vector of certain quantiles of Ys (taus
);
the censoring proportion (PC
) and the truncation proportion
(PT
).
Examples
# With time-invariant covariates only
sim1 = sim.ltrc(n = 40)
head(sim1$dat)
# With one time-dependent covariate
sim2 = sim.ltrc(n = 40, time.dep = TRUE,
distr.A = "binomial", p.A = 0.8, Cmax = 5)
head(sim2$dat)
# With one time-dependent covariate with dependence on the truncation time
sim3 = sim.ltrc(n = 40, time.dep = TRUE, Zv.depA = TRUE, Cmax = 5)
head(sim3$dat)