BaseNorm {pkmon} | R Documentation |
Normalized spline basis
Description
Computes the k-monotone discrete splines from Lefevre and Loisel (2013).
Usage
BaseNorm(k, J)
Arguments
k |
Degree of monotony |
J |
maximum support of the splines |
Value
matrix Q
with J+1 rows and J+1 columns with Q(i,j)=Q_j^k(i-1)=C_{j-i+k-1}^{k-1}
, where C
represents the binomial coefficient.
Author(s)
Jade Giguelay
References
Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, in revision, (arXiv:1608.06541)
Lefevre C., Loisel S. (2013) <DOI:10.1239/jap/1378401239> On multiply monotone distributions, continuous or discrete, with applications, Journal of Applied Probability, 50, 827–847.
See Also
rSpline, dSpline, rmixSpline, dmixSpline
Examples
# Computing 3-monotone splines with maximum support 8
Q=BaseNorm(3, 8)
matplot(Q, type="l", main="3-monotone splines with maximum support 8");
[Package pkmon version 1.1 Index]