solve_piqp {piqp} | R Documentation |
PIQP Solver
Description
Solves
arg\min_x 0.5 x'P x + c'x
s.t.
A x = b
G x \leq h
x_{lb} \leq x \leq x_{ub}
for real matrices P (nxn, positive semidefinite), A (pxn) with m number of equality constraints, and G (mxn) with m number of inequality constraints
Usage
solve_piqp(
P = NULL,
c = NULL,
A = NULL,
b = NULL,
G = NULL,
h = NULL,
x_lb = NULL,
x_ub = NULL,
settings = list(),
backend = c("auto", "sparse", "dense")
)
Arguments
P |
dense or sparse matrix of class dgCMatrix or coercible into such, must be positive semidefinite |
c |
numeric vector |
A |
dense or sparse matrix of class dgCMatrix or coercible into such |
b |
numeric vector |
G |
dense or sparse matrix of class dgCMatrix or coercible into such |
h |
numeric vector |
x_lb |
a numeric vector of lower bounds, default |
x_ub |
a numeric vector of upper bounds, default |
settings |
list with optimization parameters, empty by default; see |
backend |
which backend to use, if auto and P, A or G are sparse then sparse backend is used ( |
Value
A list with elements solution elements
References
Schwan, R., Jiang, Y., Kuhn, D., Jones, C.N. (2023). “PIQP: A Proximal Interior-Point Quadratic Programming Solver.” doi:10.48550/arXiv.2304.00290
See Also
piqp()
, piqp_settings()
and the underlying PIQP documentation: https://predict-epfl.github.io/piqp/
Examples
## example, adapted from PIQP documentation
library(piqp)
library(Matrix)
P <- Matrix(c(6., 0.,
0., 4.), 2, 2, sparse = TRUE)
c <- c(-1., -4.)
A <- Matrix(c(1., -2.), 1, 2, sparse = TRUE)
b <- c(1.)
G <- Matrix(c(1., 2., -1., 0.), 2, 2, sparse = TRUE)
h <- c(0.2, -1.)
x_lb <- c(-1., -Inf)
x_ub <- c(1., Inf)
settings <- list(verbose = TRUE)
# Solve with PIQP
res <- solve_piqp(P, c, A, b, G, h, x_lb, x_ub, settings)
res$x