piqp {piqp} | R Documentation |
PIQP Solver object
Description
PIQP Solver object
Usage
piqp(
P = NULL,
c = NULL,
A = NULL,
b = NULL,
G = NULL,
h = NULL,
x_lb = NULL,
x_ub = NULL,
settings = list(),
backend = c("auto", "sparse", "dense")
)
Arguments
P |
dense or sparse matrix of class dgCMatrix or coercible into such, must be positive semidefinite |
c |
numeric vector |
A |
dense or sparse matrix of class dgCMatrix or coercible into such |
b |
numeric vector |
G |
dense or sparse matrix of class dgCMatrix or coercible into such |
h |
numeric vector |
x_lb |
a numeric vector of lower bounds, default |
x_ub |
a numeric vector of upper bounds, default |
settings |
list with optimization parameters, empty by default; see |
backend |
which backend to use, if auto and P, A or G are sparse then sparse backend is used ( |
Details
Allows one to solve a parametric
problem with for example warm starts between updates of the parameter, c.f. the examples.
The object returned by piqp
contains several methods which can be used to either update/get details of the
problem, modify the optimization settings or attempt to solve the problem.
Value
An R6-object of class "piqp_model" with methods defined which can be further used to solve the problem with updated settings / parameters.
Usage
model = piqp(P = NULL, c = NULL, A = NULL, b = NULL, G = NULL, h = NULL, x_lb = NULL, x_ub = NULL, settings = piqp_settings(), backend = c("auto", "sparse", "dense")) model$solve() model$update(P = NULL, c = NULL, A = NULL, b = NULL, G = NULL, h = NULL, x_lb = NULL, x_ub = NULL) model$get_settings() model$get_dims() model$update_settings(new_settings = piqp_settings()) print(model)
See Also
Examples
## example, adapted from PIQP documentation
library(piqp)
library(Matrix)
P <- Matrix(c(6., 0.,
0., 4.), 2, 2, sparse = TRUE)
c <- c(-1., -4.)
A <- Matrix(c(1., -2.), 1, 2, sparse = TRUE)
b <- c(1.)
G <- Matrix(c(1., 2., -1., 0.), 2, 2, sparse = TRUE)
h <- c(0.2, -1.)
x_lb <- c(-1., -Inf)
x_ub <- c(1., Inf)
settings <- list(verbose = TRUE)
model <- piqp(P, c, A, b, G, h, x_lb, x_ub, settings)
# Solve
res <- model$solve()
res$x
# Define new data
A_new <- Matrix(c(1., -3.), 1, 2, sparse = TRUE)
h_new <- c(2., 1.)
# Update model and solve again
model$update(A = A_new, h = h_new)
res <- model$solve()
res$x