pima {pimeta}R Documentation

Calculating Prediction Intervals

Description

This function can estimate prediction intervals (PIs) as follows: A parametric bootstrap PI based on confidence distribution (Nagashima et al., 2018). A parametric bootstrap confidence interval is also calculated based on the same sampling method for bootstrap PI. The Higgins–Thompson–Spiegelhalter (2009) prediction interval. The Partlett–Riley (2017) prediction intervals.

Usage

pima(y, se, v = NULL, alpha = 0.05, method = c("boot", "HTS", "HK",
  "SJ", "KR", "CL", "APX"), B = 25000, parallel = FALSE, seed = NULL,
  maxit1 = 1e+05, eps = 10^(-10), lower = 0, upper = 1000,
  maxit2 = 1000, tol = .Machine$double.eps^0.25, rnd = NULL,
  maxiter = 100)

Arguments

y

the effect size estimates vector

se

the within studies standard error estimates vector

v

the within studies variance estimates vector

alpha

the alpha level of the prediction interval

method

the calculation method for the pretiction interval (default = "boot").

  • boot: A parametric bootstrap prediction interval (Nagashima et al., 2018).

  • HTS: the Higgins–Thompson–Spiegelhalter (2009) prediction interval / (the DerSimonian & Laird estimator for τ2\tau^2 with an approximate variance estimator for the average effect, (1/w^i)1(1/\sum{\hat{w}_i})^{-1}, df=K2df=K-2).

  • HK: Partlett–Riley (2017) prediction interval (the REML estimator for τ2\tau^2 with the Hartung (1999)'s variance estimator [the Hartung and Knapp (2001)'s estimator] for the average effect, df=K2df=K-2).

  • SJ: Partlett–Riley (2017) prediction interval / (the REML estimator for τ2\tau^2 with the Sidik and Jonkman (2006)'s bias coreccted variance estimator for the average effect, df=K2df=K-2).

  • KR: Partlett–Riley (2017) prediction interval / (the REML estimator for τ2\tau^2 with the Kenward and Roger (1997)'s approach for the average effect, df=ν1df=\nu-1).

  • APX: Partlett–Riley (2017) prediction interval / (the REML estimator for τ2\tau^2 with an approximate variance estimator for the average effect, df=K2df=K-2).

B

the number of bootstrap samples

parallel

the number of threads used in parallel computing, or FALSE that means single threading

seed

set the value of random seed

maxit1

the maximum number of iteration for the exact distribution function of QQ

eps

the desired level of accuracy for the exact distribution function of QQ

lower

the lower limit of random numbers of τ2\tau^2

upper

the upper limit of random numbers of τ2\tau^2

maxit2

the maximum number of iteration for numerical inversions

tol

the desired level of accuracy for numerical inversions

rnd

a vector of random numbers from the exact distribution of τ2\tau^2

maxiter

the maximum number of iteration for REML estimation

Details

The functions bootPI, pima_boot, pima_hts, htsdl, pima_htsreml, htsreml are deprecated, and integrated to the pima function.

Value

References

Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x

Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95 confidence and prediction intervals following REML estimation. Stat Med. 36(2): 301-317. https://doi.org/10.1002/sim.7140

Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.

Hartung, J. (1999). An alternative method for meta-analysis. Biom J. 41(8): 901-916. https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W.

Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 20(12): 1771-1782. https://doi.org/10.1002/sim.791.

Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 50(12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019.

Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53(3): 983-997. https://www.ncbi.nlm.nih.gov/pubmed/9333350.

DerSimonian, R., and Laird, N. (1986). Meta-analysis in clinical trials. Control Clin Trials. 7(3): 177-188.

See Also

print.pima, plot.pima, cima.

Examples

data(sbp, package = "pimeta")

# Nagashima-Noma-Furukawa prediction interval
# is sufficiently accurate when I^2 >= 10% and K >= 3
pimeta::pima(sbp$y, sbp$sigmak, seed = 3141592, parallel = 4)

# Higgins-Thompson-Spiegelhalter prediction interval and
# Partlett-Riley prediction intervals
# are accurate when I^2 > 30% and K > 25
pimeta::pima(sbp$y, sbp$sigmak, method = "HTS")
pimeta::pima(sbp$y, sbp$sigmak, method = "HK")
pimeta::pima(sbp$y, sbp$sigmak, method = "SJ")
pimeta::pima(sbp$y, sbp$sigmak, method = "KR")
pimeta::pima(sbp$y, sbp$sigmak, method = "APX")

[Package pimeta version 1.1.3 Index]