falsediscoveryrate {phylosamp} | R Documentation |
Calculate false discovery rate of a sample
Description
This function calculates the false discovery rate (proportion of linked pairs that are false positives) in a sample given the sensitivity \eta
and specificity \chi
of the linkage criteria, and sample size M
. Assumptions about transmission and linkage (single or multiple)
can be specified.
Usage
falsediscoveryrate(eta, chi, rho, M, R = NULL, assumption = "mtml")
Arguments
eta |
scalar or vector giving the sensitivity of the linkage criteria |
chi |
scalar or vector giving the specificity of the linkage criteria |
rho |
scalar or vector giving the proportion of the final outbreak size that is sampled |
M |
scalar or vector giving the number of cases sampled |
R |
scalar or vector giving the effective reproductive number of the pathogen (default=NULL) |
assumption |
a character vector indicating which assumptions about transmission and linkage criteria. Default =
|
Value
scalar or vector giving the true discovery rate
Author(s)
John Giles, Shirlee Wohl, and Justin Lessler
See Also
Other discovery_rate:
truediscoveryrate()
Examples
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
falsediscoveryrate(eta=1, chi=0.9, rho=0.5, M=100, assumption='stsl')
# Multiple-transmission and imperfect sensitivity
falsediscoveryrate(eta=0.99, chi=0.9, rho=1, M=50, R=1, assumption='mtsl')
# Small outbreak, larger sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=1, M=50, R=1, assumption='mtml')
# Large outbreak, small sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=0.5, M=1000, R=1, assumption='mtml')