sdm {phyloregion} | R Documentation |
Species distribution models
Description
This function computes species distribution models using
two modelling algorithms: generalized linear models,
and maximum entropy (only if rJava
is available).
Note: this is an experimental function, and may change in the future.
Usage
sdm(
x,
predictors = NULL,
pol = NULL,
thin = TRUE,
thin.size = 500,
algorithm = "all",
size = 50,
width = 50000,
mask = FALSE
)
Arguments
x |
A dataframe containing the species occurrences and geographic coordinates. Column 1 labeled as "species", column 2 "lon", column 3 "lat". |
predictors |
A |
pol |
A vector polygon specifying the boundary to restrict the
prediction. If |
thin |
Whether to thin occurrences |
thin.size |
The size of the thin occurrences. |
algorithm |
Character. The choice of algorithm to run the species distribution model. Available algorithms include:
|
size |
Minimum number of points required to successfully run a species distribution model especially for species with few occurrences. |
width |
Width of buffer in meter if x is in longitude/latitude CRS. |
mask |
logical. Should y be used to mask? Only used if pol is a SpatVector |
Value
A list with the following objects:
-
ensemble_raster
The ensembled raster that predicts the potential species distribution based on the algorithms selected. -
data
The dataframe of occurrences used to implement the model. -
polygon
Map polygons of the predicted distributions analogous to extent-of-occurrence range polygon. -
indiv_models
Raster layers for the separate models that predict the potential species distribution.
References
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra‐Diaz, J.M., Thuiller, W., Yates, K.L., Zimmermann, N.E. and Merow, C. (2020), A standard protocol for reporting species distribution models. Ecography, 43: 1261-1277.
Examples
# get predictor variables
library(predicts)
f <- system.file("ex/bio.tif", package="predicts")
preds <- rast(f)
#plot(preds)
# get species occurrences
b <- file.path(system.file(package="predicts"), "ex/bradypus.csv")
d <- read.csv(b)
# fit ensemble model for four algorithms
m <- sdm(d, predictors = preds, algorithm = "all")
# plot(m$ensemble_raster)
# plot(m$polygon, add=TRUE)