sdm {phyloregion}R Documentation

Species distribution models

Description

This function computes species distribution models using two modelling algorithms: generalized linear models, and maximum entropy (only if rJava is available). Note: this is an experimental function, and may change in the future.

Usage

sdm(
  x,
  predictors = NULL,
  pol = NULL,
  thin = TRUE,
  thin.size = 500,
  algorithm = "all",
  size = 50,
  width = 50000,
  mask = FALSE
)

Arguments

x

A dataframe containing the species occurrences and geographic coordinates. Column 1 labeled as "species", column 2 "lon", column 3 "lat".

predictors

A SpatRaster to extract values from the locations in x on which the models will be projected.

pol

A vector polygon specifying the boundary to restrict the prediction. If NULL, the extent of input points is used.

thin

Whether to thin occurrences

thin.size

The size of the thin occurrences.

algorithm

Character. The choice of algorithm to run the species distribution model. Available algorithms include:

  • “all”: Calls all available algorithms: GLM, and MAXENT.

  • “GLM”: Calls only Generalized linear model.

  • “MAXENT”: Calls only Maximum entropy.

size

Minimum number of points required to successfully run a species distribution model especially for species with few occurrences.

width

Width of buffer in meter if x is in longitude/latitude CRS.

mask

logical. Should y be used to mask? Only used if pol is a SpatVector

Value

A list with the following objects:

References

Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., Feng, X., Guillera‐Arroita, G., Guisan, A., Lahoz‐Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra‐Diaz, J.M., Thuiller, W., Yates, K.L., Zimmermann, N.E. and Merow, C. (2020), A standard protocol for reporting species distribution models. Ecography, 43: 1261-1277.

Examples


# get predictor variables
library(predicts)
f <- system.file("ex/bio.tif", package="predicts")
preds <- rast(f)
#plot(preds)

# get species occurrences
b <- file.path(system.file(package="predicts"), "ex/bradypus.csv")
d <- read.csv(b)

# fit ensemble model for four algorithms
m <- sdm(d, predictors = preds, algorithm = "all")
# plot(m$ensemble_raster)
# plot(m$polygon, add=TRUE)


[Package phyloregion version 1.0.8 Index]