plot.gv {phylin} | R Documentation |
Plot a 'gv' object
Description
Plot the semi-variogram in a gv object. If a multiple genetic distances are found, it plots the median value and the 95% confidence interval for the median.
Usage
## S3 method for class 'gv'
plot(x, line.res = 100, pch=1, legend=TRUE, leg.x=NA,
leg.y=NA, leg.cex=1, bar.length=0.1, bar.col="gray",
bar.lty=par("lty"), xlab='Distance', ylab='Semivariance',
x.line=3, y.line=3, ncol=1, main=NULL,
leg.label = expression(italic('n')*' size'), ...)
Arguments
x |
'gv' object as given by 'gen.variogram'. |
line.res |
Number of points in the model line. |
pch |
Symbol to be used in the plot. |
legend |
Boolean indicating if a legend showing n size should be printed. |
leg.x |
The x position for the legend. The legend will be placed at the right side of the plot if this value is set to NA. |
leg.y |
The y position for the legned. The legend will be placed at the bottom of the plot if this value is set to NA. |
leg.cex |
Multiplication factor for the legend symbol size. |
bar.length |
If multiple trees are given, confidence interval bars are ploted. The horizontal length of the line at both bar tips is defined with this parameter (defaults to 0.1). |
bar.col |
The color of the bars when multiple trees are given. |
bar.lty |
The line type for the bars when multiple tree are given. |
xlab |
The label for x axis. |
ylab |
The label for y axis. |
x.line |
Position of x label in lines. |
y.line |
Position of y label in lines. |
ncol |
Number of legend columns. |
main |
Main title of the plot. |
leg.label |
Legend title. |
... |
Further plotting arguments to be passed. |
Details
Simple plot of the semi-variogram contained in a 'gv' object. If the object has a model, the model line is also plotted.
Value
Plot.
Author(s)
Pedro Tarroso <ptarroso@cibio.up.pt>
See Also
Examples
data(vipers)
data(d.gen)
# create a distance matrix between samples
r.dist <- dist(vipers[,1:2])
# fit a variogram with defaults (shperical model) and estimation of range
gv <- gen.variogram(r.dist, d.gen, 0.25)
#plot semi-variogram
plot(gv)
# plot semi-variogram with model
gv <- gv.model(gv)
plot(gv)