phyclust.logL {phyclust} | R Documentation |
Log-Likelihood of phyclust
Description
This computes a log-likelihood value of phyclust
.
Usage
phyclust.logL(X, ret.phyclust = NULL, K = NULL, Eta = NULL,
Mu = NULL, pi = NULL, kappa = NULL, Tt = NULL,
substitution.model = NULL, identifier = NULL, code.type = NULL,
label = NULL)
Arguments
X |
nid/sid matrix with |
ret.phyclust |
an object with the class |
K |
number of clusters. |
Eta |
proportion of subpopulations, |
Mu |
centers of subpopulations, dim = |
pi |
equilibrium probabilities, each row sums to 1. |
kappa |
transition and transversion bias. |
Tt |
total evolution time, |
substitution.model |
substitution model. |
identifier |
identifier. |
code.type |
code type. |
label |
label of sequences for semi-supervised clustering. |
Details
X
should be a numerical matrix containing sequence data that
can be transfered by code2nid
or code2sid
.
Either input ret.phyclust
or all other arguments for this function.
ret.phyclust
can be obtain either from an EM iteration of
phyclust
or from a M step of phyclust.m.step
.
If label
is inputted, the label information will be used to
calculate log likelihood (complete-data), even the ret.phyclust
is the result of unsupervised clustering.
Value
This function returns a log-likelihood value of phyclust
.
Author(s)
Wei-Chen Chen wccsnow@gmail.com
References
Phylogenetic Clustering Website: https://snoweye.github.io/phyclust/
See Also
Examples
## Not run:
library(phyclust, quiet = TRUE)
EMC.1 <- .EMC
EMC.1$EM.iter <- 1
# the same as EMC.1 <- .EMControl(EM.iter = 1)
X <- seq.data.toy$org
ret.1 <- phyclust(X, 2, EMC = EMC.1)
phyclust.logL(X, ret.phyclust = ret.1)
# For semi-supervised clustering.
semi.label <- rep(0, nrow(X))
semi.label[1:3] <- 1
phyclust.logL(X, ret.phyclust = ret.1, label = semi.label)
## End(Not run)