plot.Tagloss {phenology} | R Documentation |
Plot the daily rate of tag loss.
Description
Plot the daily rate of tag loss.
To use this function without a result of Tagloss_fit(), see the hack in examples.
Usage
## S3 method for class 'Tagloss'
plot(
x,
t = NULL,
fitted.parameters = NULL,
fixed.parameters = NULL,
scale = 1,
model_before = NULL,
model_after = NULL,
model = c("1", "2", "R1", "R2", "L1", "L2", "cumul", "cumul1", "N2", "N1", "N0", "NLR",
"N0R", "NL0", "N00"),
col = rev(grey.colors(4, start = 0.9, end = 0.3)),
text.col = grey.colors(4, start = 0.9, end = 0.3),
label.col = "black",
add = FALSE,
mcmc = FALSE,
Hessian = NULL,
replicates = NULL,
method = NULL,
probs = c(0.025, 0.975),
progressbar = FALSE,
decoration = FALSE,
...
)
Arguments
x |
Object obteined from Tagloss_fit() |
t |
Time for which values of model must be ploted |
fitted.parameters |
Set of parameters |
fixed.parameters |
Another set of parameters without standard error associated |
scale |
Scale value. When Cumul is used, scale is always 1. |
model_before |
Transformation of parameters before to use Tagloss_model() |
model_after |
Transformation of parameters after to use Tagloss_model() |
model |
Can be 1, 2, R1, R2, L1, L2 or Cumul (2 tags) or Cumul1 (1 tag) |
col |
The colors of shading areas of cumul or the color of line |
text.col |
The text color for cumul model |
label.col |
The text color used for labels when decoration is true |
add |
Should the data be added to a previous plot? |
mcmc |
The mcmc result |
Hessian |
Hessian matrix of parameters |
replicates |
Number of replicates for confidence interval |
method |
Which method to use to estimate confidence interval |
probs |
Quantiles to show for confidence interval |
progressbar |
Is shown a progressbar? |
decoration |
Try to add name of parameters on the graph |
... |
Parameters transmitted to plot |
Details
plot.tagloss plots the daily rate of tag loss.
Value
An invisible dataframe with values used for plotting.
Author(s)
Marc Girondot
See Also
Other Model of Tag-loss:
Tagloss_LengthObs()
,
Tagloss_L()
,
Tagloss_cumul()
,
Tagloss_daymax()
,
Tagloss_fit()
,
Tagloss_format()
,
Tagloss_mcmc_p()
,
Tagloss_mcmc()
,
Tagloss_model()
,
Tagloss_simulate()
,
logLik.Tagloss()
,
o_4p_p1p2
,
plot.TaglossData()
Examples
## Not run:
library(phenology)
# Example
t <- 1:1000
par <- c(D1_1=200, D2D1_1=100, D3D2_1=200,
A_1=-logit(0.02), B_1=-logit(0.05), C_1=-logit(0.07))
phenology:::plot.Tagloss(x=list(), t=t, fitted.parameters=par, model="1")
phenology:::plot.Tagloss(x=list(), t=t, fitted.parameters=par, model="1",
scale=1000, decoration = TRUE)
par <- c(D1_2=200, D2D1_2=100, D3D2_2=200,
A_2=-logit(0.05), B_2=-logit(0.03), C_2=-logit(0.03))
phenology:::plot.Tagloss(x=list(), t=t, fitted.parameters=par, ylim=c(0, 1),
scale = 10, model="2", decoration = TRUE)
par <- c(D1_L2=200, D2D1_L2=100, D3D2_L2=200,
A_L2=-logit(0.05), B_L2=-logit(0.07), C_L2=-logit(0.07))
phenology:::plot.Tagloss(x=list(), t=t, fitted.parameters=par, model="L2")
par <- c(D1_R2=200, D2D1_R2=0, D3D2_R2=700,
A_R2=-logit(0.02), B_R2=-logit(0.05), C_R2=-logit(0.07))
phenology:::plot.Tagloss(x=list(), t=t, fitted.parameters=par, model="R2",
col="red", add=TRUE)
par <- c(D1_L1=200, D2D1_L1=2000, D3D2_L1=2000,
A_L1=-logit(0.05), B_L1=-logit(0.02), C_L1=-logit(0.1))
phenology:::plot.Tagloss(x=list(), t=t, fitted.parameters=par, model="L1")
# To plot the history of individuals
par <- c(D1_1=200, D2D1_1=100, D3D2_1=200,
A_1=-logit(5E-4), B_1=-logit(4E-4), C_1=-logit(5E-4),
D1_2=200, D2D1_2=100, D3D2_2=200,
A_2=-logit(6E-4), B_2=-logit(5E-4), C_2=-logit(6E-4))
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par,
model="Cumul",
decoration = TRUE)
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par,
model="Cumul",
decoration = TRUE, col=c("red", "green", "blue"))
# To plot the history of individuals
par <- c(D1_R1=200, D2D1_R1=300, D3D2_R1=200,
A_R1=-logit(5E-4), B_R1=-logit(4E-4), C_R1=-logit(5E-4),
D1_R2=200, D2D1_R2=200, D3D2_R2=200,
A_R2=-logit(6E-4), B_R2=-logit(5E-4), C_R2=-logit(6E-4),
D1_L1=200, D2D1_L1=400, D3D2_L1=200,
A_L1=-logit(5E-4), B_L1=-logit(4E-4), C_L1=-logit(5E-4),
D1_L2=200, D2D1_L2=100, D3D2_L2=200,
A_L2=-logit(6E-4), B_L2=-logit(5E-4), C_L2=-logit(6E-4))
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par, model="Cumul",
decoration = TRUE)
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par, model="R1",
decoration = TRUE)
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par, model="R2",
decoration = TRUE)
# Example of fit
data_f_21 <- Tagloss_format(outLR, model="21")
data_f_21_fast <- subset(data_f_21, subset=(is.na(data_f_21$N20)))
par <- c('D1_2' = 49.78891736351531,
'D2D1_2' = 1059.3635769732305,
'D3D2_2' = 12.434313273804602,
'A_2' = 5.2238379144659683,
'B_2' = 8.0050044071275543,
'C_2' = 8.4317863609499675,
'D1_1' = 701.80273287212935,
'D2D1_1' = 0.010951749100596819,
'D3D2_1' = 3773.6290607434876,
'A_1' = 205.42435592344776,
'B_1' = 9.9598342503239863,
'C_1' = 6.7234868237164722)
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par, model="1",
decoration = TRUE)
phenology:::plot.Tagloss(x=list(), t=1:1000, fitted.parameters=par, model="2",
decoration = TRUE)
o <- Tagloss_fit(data=data_f_21_fast, fitted.parameters=par, hessian = TRUE)
plot(x=o, model="1", replicates=0,
method=NULL, decoration = TRUE)
plot(x=o, model="1", replicates=1000,
method="Hessian", decoration = TRUE)
## End(Not run)