Tagloss_mcmc {phenology} | R Documentation |
Bayesian model of tag loss using a CMR database.
Description
This function fits a model of tag loss using a CMR database using Bayesian mcmc.
The parameters must be stored in a data.frame with named rows for each parameter with the following columns:
Density. The density function name, example
dnorm
,dlnorm
,dunif
Prior1. The first parameter to send to the
Density
functionPrior2. The second parameter to send to the
Density
functionSDProp. The standard error from new proposition value of this parameter
Min. The minimum value for this parameter
Max. The maximum value for this parameter
Init. The initial value for this parameter
Usage
Tagloss_mcmc(
data = stop("A database formated using Tagloss_format() must be used"),
parameters = stop("Priors must be supplied"),
fixed.parameters = NULL,
model_before = NULL,
model_after = NULL,
mc.cores = detectCores(all.tests = FALSE, logical = TRUE),
groups = detectCores(all.tests = FALSE, logical = TRUE),
n.iter = 10000,
n.chains = 1,
n.adapt = 100,
thin = 30,
trace = FALSE,
traceML = FALSE,
adaptive = FALSE,
adaptive.lag = 500,
adaptive.fun = function(x) {
ifelse(x > 0.234, 1.3, 0.7)
},
intermediate = NULL,
filename = "intermediate.Rdata",
previous = NULL
)
Arguments
data |
An object formated using Tagloss_format |
parameters |
A data.frame with priors; see description and examples |
fixed.parameters |
Set of fixed parameters |
model_before |
Transformation of parameters before to use Tagloss_model() |
model_after |
Transformation of parameters after to use Tagloss_model() |
mc.cores |
Number of cores to use for parallel computing |
groups |
Number of groups for parallel computing |
n.iter |
Number of iterations for each chain |
n.chains |
Number of chains |
n.adapt |
Number of iteration to stabilize likelihood |
thin |
Interval for thinning Markov chain |
trace |
Or FALSE or period to show progress |
traceML |
TRUE or FALSE to show ML |
adaptive |
Should an adaptive process for SDProp be used |
adaptive.lag |
Lag to analyze the SDProp value in an adaptive context |
adaptive.fun |
Function used to change the SDProp |
intermediate |
Or NULL of period to save intermediate result |
filename |
Name of file in which intermediate results are saved |
previous |
The content of the file in which intermediate results are saved |
Details
Tagloss_mcmc Bayesian model of tag loss using a CMR database.
Value
Return a list object with the Bayesian model describing tag loss.
Author(s)
Marc Girondot
See Also
Other Model of Tag-loss:
Tagloss_LengthObs()
,
Tagloss_L()
,
Tagloss_cumul()
,
Tagloss_daymax()
,
Tagloss_fit()
,
Tagloss_format()
,
Tagloss_mcmc_p()
,
Tagloss_model()
,
Tagloss_simulate()
,
logLik.Tagloss()
,
o_4p_p1p2
,
plot.TaglossData()
,
plot.Tagloss()
Examples
## Not run:
library(phenology)
# Example
data_f_21 <- Tagloss_format(outLR, model="21")
# model fitted by Rivalan et al. 2005
par <- c(a0_2=-5.43E-2, a1_2=-103.52, a4_2=5.62E-4,
delta_1=3.2E-4)
pfixed <- c(a2_2=0, a3_2=0, a2_1=0, a3_1=0)
model_before <- "par['a0_1']=par['a0_2'];par['a1_1']=par['a1_2'];par['a4_1']=par['a4_2']"
o <- Tagloss_fit(data=data_f_21, fitted.parameters=par, fixed.parameters=pfixed,
model_before=model_before)
pMCMC <- Tagloss_mcmc_p(o, accept=TRUE)
o_MCMC <- Tagloss_mcmc(data=data_f_21, parameters=pMCMC, fixed.parameters=pfixed,
model_before=model_before,
n.iter=10000, n.chains = 1, n.adapt = 100, thin=30)
## End(Not run)