smooth_ts {phenocamr} | R Documentation |
Smooth a PhenoCam time series
Description
Smooths time series iteratively using a Akaike information criterion (AIC) to find an optimal smoothing parameter and curve.
Usage
smooth_ts(
data,
metrics = c("gcc_mean", "gcc_50", "gcc_75", "gcc_90", "rcc_mean", "rcc_50", "rcc_75",
"rcc_90"),
force = TRUE,
internal = TRUE,
out_dir = tempdir()
)
Arguments
data |
a PhenoCam data file or data structure |
metrics |
which metrics to process, normally all default ones |
force |
|
internal |
return a data structure if given a file on disk
( |
out_dir |
output directory where to store data |
Value
An PhenoCam data structure or file with optimally smoothed time series objects added to the original file. Smoothing is required for 'phenophase()' and 'transition_dates()' functions.
Examples
## Not run:
# with defaults, outputting a data frame
# with smoothed values, overwriting the original
# download demo data (do not smooth)
download_phenocam(site = "harvard$",
veg_type = "DB",
roi_id = "1000",
frequency = "3",
smooth = FALSE)
# smooth the downloaded file (and overwrite the original)
smooth_ts(file.path(tempdir(),"harvard_DB_1000_3day.csv"))
# the function also works on a PhenoCam data frame
df <- read_phenocam(file.path(tempdir(),"harvard_DB_1000_3day.csv"))
df <- smooth_ts(df)
## End(Not run)
[Package phenocamr version 1.1.5 Index]