detect_outliers {phenocamr} | R Documentation |
Detect outliers in PhenoCam time series
Description
The function fills in the existing column to hold outlier flags, and either overwrites the original file or outputs a data structure.
Usage
detect_outliers(
data,
iterations = 20,
sigma = 2,
grvi = FALSE,
snowflag = FALSE,
plot = FALSE,
internal = TRUE,
out_dir = tempdir()
)
Arguments
data |
PhenoCam data structure or filename |
iterations |
number of itterations in order to detect outliers () |
sigma |
number of deviations to exclude outliers at |
grvi |
reverse the direction of the screening intervals to accomodate for GRVI outliers |
snowflag |
use manual snow flag labels as outliers |
plot |
visualize the process, mostly for debugging
( |
internal |
return a data structure if given a file on disk
( |
out_dir |
output directory where to store data |
Examples
## Not run:
# download demo data (do not detect outliers)
download_phenocam(site = "harvard$",
veg_type = "DB",
roi_id = "1000",
frequency = "3",
outlier_detection = FALSE)
# detect outliers in the downloaded file
detect_outliers(file.path(tempdir(),"harvard_DB_1000_3day.csv"))
## End(Not run)
[Package phenocamr version 1.1.5 Index]