fitCDM {phenoCDM} | R Documentation |
Fit a CDM Model
Description
This function fits a CDM model on the input data as it is described by the phenoSim function.
Usage
fitCDM(x, z, connect = NULL, nGibbs = 1000, nBurnin = 1, n.adapt = 100,
n.chains = 4, quiet = FALSE, calcLatentGibbs = FALSE, trend = +1)
Arguments
x |
Matrix of predictors [N x p]. |
z |
Vector of response values [N x 1]. |
connect |
The connectivity matrix for the z vector [n x 2]. Each row contains the last and next elements of the time-series. NA values indicate not connected. |
nGibbs |
Number of MCMC itterations |
nBurnin |
Number of burn-in itterations. |
n.adapt |
Number of itterations for adaptive sampling |
n.chains |
Number of MCMC chains |
quiet |
logical value indicating whether to report the progress |
calcLatentGibbs |
logical value indicating whether to calculate the latent states |
trend |
time-series expected trend as -1:decreasing, +1:increasing, 0: not constrained |
Examples
#Summarize CDM Model Ouput
ssSim <- phenoSim(nSites = 2, #number of sites
nTSet = 30, #number of Time steps
beta = c(1, 2), #beta coefficients
sig = .01, #process error
tau = .1, #observation error
plotFlag = TRUE, #whether plot the data or not
miss = 0.05, #fraction of missing data
ymax = c(6, 3) #maximum of saturation trajectory
)
ssOut <- fitCDM(x = ssSim$x, #predictors
nGibbs = 200,
nBurnin = 100,
z = ssSim$z,#response
connect = ssSim$connect, #connectivity of time data
quiet=TRUE)
summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)
colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)
[Package phenoCDM version 0.1.3 Index]