vanDerPol {phaseR} | R Documentation |
The Van der Pol oscillator
Description
The derivative function of the Van der Pol Oscillator, an example of a two-dimensional autonomous ODE system.
Usage
vanDerPol(t, y, parameters)
Arguments
t |
The value of t, the independent
variable, to evaluate the derivative at. Should be a
|
y |
The values of x and
y, the dependent variables, to evaluate
the derivative at. Should be a |
parameters |
The values of the parameters of the system. Should be a
|
Details
vanDerPol
evaluates the derivative of the following ODE at the point
(t, x, y):
Its format is designed to be compatible with ode
from
the deSolve
package.
Value
Returns a list
containing the values of the two
derivatives at
(t, x, y).
Author(s)
Michael J Grayling
See Also
Examples
# Plot the velocity field, nullclines and several trajectories.
vanDerPol_flowField <- flowField(vanDerPol,
xlim = c(-5, 5),
ylim = c(-5, 5),
parameters = 3,
points = 15,
add = FALSE)
y0 <- matrix(c(2, 0, 0, 2, 0.5, 0.5), 3, 2,
byrow = TRUE)
vanDerPol_nullclines <- nullclines(vanDerPol,
xlim = c(-5, 5),
ylim = c(-5, 5),
parameters = 3,
points = 500)
vanDerPol_trajectory <- trajectory(vanDerPol,
y0 = y0,
tlim = c(0, 10),
parameters = 3)
# Plot x and y against t
vanDerPol_numericalSolution <- numericalSolution(vanDerPol,
y0 = c(4, 2),
tlim = c(0, 100),
parameters = 3)
# Determine the stability of the equilibrium point
vanDerPol_stability <- stability(vanDerPol,
ystar = c(0, 0),
parameters = 3)
[Package phaseR version 2.2.1 Index]