SA_step3 {phantSEM} | R Documentation |
Step 3 of sensitivity analysis function
Description
SA_step3()
computes the parameter estimates in your phantom model defined in step 1 for the different values provided.
Usage
SA_step3(step2, n)
Arguments
step2 |
The object returned from SA_step2. |
n |
The sample size. |
Value
A list of parameter estimates from each test covariance matrix.
Examples
#' @examples
covmatrix <- matrix(c(
0.25, 0.95, 0.43,
0.95, 8.87, 2.66,
0.43, 2.66, 10.86
), nrow = 3, byrow = TRUE)
colnames(covmatrix) <- c("X", "M2", "Y2")
# lavann syntax for observed model
observed <- " M2 ~ X
Y2 ~ M2+X "
# lavaan output
obs_output <- lavaan::sem(model = observed, sample.cov = covmatrix, sample.nobs = 200)
# lavaan syntax for phantom variable model
phantom <- " M2 ~ M1 + Y1 + a*X
Y2 ~ M1 + Y1 + b*M2 + cp*X "
Step1 <- SA_step1(
lavoutput = obs_output,
mod_obs = observed,
mod_phant = phantom
)
phantom_assignment <- list(
"CovM1X" = 0,
"CovY1M1" = "CovY2M2",
"CovY1X" = 0,
"VarM1" = 1,
"VarY1" = 1,
"CovM1M2" = seq(.4, .6, .1),
"CovY1Y2" = "CovM1M2",
"CovY1M2" = seq(.1, .3, .1),
"CovM1Y2" = "CovY1M2"
)
Step2 <- SA_step2(
phantom_assignment = phantom_assignment,
step1 = Step1
)
Step3 <- SA_step3(
step2 = Step2,
n = 200
)
[Package phantSEM version 1.0.0.0 Index]