SA_step1 {phantSEM} | R Documentation |
Sensitivity Analysis Function Step 1
Description
SA_step1()
is used to identify the phantom variables and generate names for their covariance parameters. The output of this function will be used in SA_step2().
Usage
SA_step1(lavoutput, mod_obs, mod_phant)
Arguments
lavoutput |
The lavaan output object output from lavaan functions sem() or lavaan() when fitting your observed model. |
mod_obs |
A lavaan syntax for the observed model. |
mod_phant |
A lavaan syntax for the phantom variable model. |
Value
a list containing the names of all phantom covariance parameters.
Examples
# covariance matrix
covmatrix <- matrix(c(
0.25, 0.95, 0.43,
0.95, 8.87, 2.66,
0.43, 2.66, 10.86
), nrow = 3, byrow = TRUE)
colnames(covmatrix) <- c("X", "M2", "Y2")
# lavann syntax for observed model
observed <- " M2 ~ X
Y2 ~ M2+X "
# lavaan output
obs_output <- lavaan::sem(model = observed, sample.cov = covmatrix, sample.nobs = 200)
# lavaan syntax for phantom variable model
phantom <- " M2 ~ M1 + Y1 + a*X
Y2 ~ M1 + Y1 + b*M2 + cp*X "
Step1 <- SA_step1(
lavoutput = obs_output,
mod_obs = observed,
mod_phant = phantom
)
[Package phantSEM version 1.0.0.0 Index]