ppgnorm {pgnorm} | R Documentation |
A function to evaluate the p
-generalized normal cdf
Description
The function evaluates the cdf of the univariate p
-generalized normal distribution according to the density
f(x,p,mean,\sigma)=(\sigma_p/ \sigma) \, C_p \, \exp \left( - \left( \frac{\sigma_p}{\sigma } \right)^p \frac{\left| x-mean \right|^p}{p} \right) ,
where C_p=p^{1-1/p}/2/\Gamma(1/p)
and \sigma_p^2=p^{2/p} \, \Gamma(3/p)/\Gamma(1/p)
.
Usage
ppgnorm(y, p, mean, sigma)
Arguments
y |
A real number, the argument of the function. |
p |
A positive number expressing the form parameter of the distribution. The default is 2. |
mean |
A real number expressing the expectation of the distribution. The default is 0. |
sigma |
A positive number expressing the standard deviation of the distribution. The default is |
Value
A real number.
Author(s)
Steve Kalke
References
S. Kalke and W.-D. Richter (2013)."Simulation of the p-generalized Gaussian distribution." Journal of Statistical Computation and Simulation. Volume 83. Issue 4.
Examples
y<-ppgnorm(2,p=3)