summary.pgam {pgam} | R Documentation |
Summary output
Description
Output of model information
Usage
## S3 method for class 'pgam'
summary(object, smo.test = FALSE, ...)
Arguments
object |
object of class |
smo.test |
Approximate significance test of smoothing terms. It can take long, so default is |
... |
further arguments passed to method |
Details
Hypothesis tests of coefficients are based o t distribution. Significance tests of smooth terms are approximate for model selection purpose only. Be very careful about the later.
Value
List containing all the information about the model fitted.
Author(s)
Washington Leite Junger wjunger@ims.uerj.br and Antonio Ponce de Leon ponce@ims.uerj.br
References
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407–417
Junger, W. L. (2004) Semiparametric Poisson-Gamma models: a roughness penalty approach. MSc Dissertation. Rio de Janeiro, PUC-Rio, Department of Electrical Engineering.
Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London
Hastie, T. J., Tibshirani, R. J.(1990) Generalized Additive Models. Chapman and Hall, London
McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, 2nd edition, London
Pierce, D. A., Schafer, D. W. (1986) Residuals in generalized linear models. Journal of the American Statistical Association, 81(396),977-986
See Also
Examples
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")
summary(m)