AIC.pgam {pgam} | R Documentation |
AIC extraction
Description
Method for approximate Akaike Information Criterion extraction.
Usage
## S3 method for class 'pgam'
AIC(object, k = 2, ...)
Arguments
object |
object of class |
k |
default is 2 for AIC. If |
... |
further arguments passed to method |
Details
An approximate measure of parsimony of the Poisson-Gama Additive Models can be achieved by the expression
AIC=\left(D\left(y;\hat\mu\right)+2gle\right)/\left(n-\tau\right)
where gle
is the number of degrees of freedom of the fitted model and \tau
is the index of the first non-zero observation.
Value
The approximate AIC value of the fitted model.
Author(s)
Washington Leite Junger wjunger@ims.uerj.br and Antonio Ponce de Leon ponce@ims.uerj.br
References
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407–417
Junger, W. L. (2004) Semiparametric Poisson-Gamma models: a roughness penalty approach. MSc Dissertation. Rio de Janeiro, PUC-Rio, Department of Electrical Engineering.
Hastie, T. J., Tibshirani, R. J.(1990) Generalized Additive Models. Chapman and Hall, London
See Also
pgam
, deviance.pgam
, logLik.pgam
Examples
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")
AIC(m)