pesel-package {pesel} | R Documentation |
Automatic estimation of number of principal components in PCA
Description
Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL).
Details
Version: 0.7.5
Author(s)
Piotr Sobczyk, Julie Josse, Malgorzata Bogdan
Maintainer: Piotr Sobczyk pj.sobczyk@gmail.com
References
Piotr Sobczyk, Malgorzata Bogdan, Julie Josse "Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood", Journal of Computational and Graphical Statistics 2017
Examples
# EXAMPLE 1 - noise
with(set.seed(23), pesel(matrix(rnorm(10000), ncol = 100), npc.min = 0))
# EXAMPLE 2 - fixed effects PCA model
sigma <- 0.5
k <- 5
n <- 100
numb.vars <- 10
# factors are drawn from normal distribution
factors <- replicate(k, rnorm(n, 0, 1))
# coefficients are drawn from uniform distribution
coeff <- replicate(numb.vars, rnorm(k, 0, 1))
SIGNAL <- scale(factors %*% coeff)
X <- SIGNAL + replicate(numb.vars, sigma * rnorm(n))
pesel(X)
[Package pesel version 0.7.5 Index]