summarize.subgroups {personalized} | R Documentation |
Summarizing covariates within estimated subgroups
Description
Summarizes covariate values within the estimated subgroups
Usage
summarize.subgroups(x, ...)
## Default S3 method:
summarize.subgroups(x, subgroup, ...)
## S3 method for class 'subgroup_fitted'
summarize.subgroups(x, ...)
Arguments
x |
a fitted object from |
... |
optional arguments to |
subgroup |
vector of indicators of same length as the number of rows in x if x is a matrix.
A value of 1 in the ith position of |
Details
The p-values shown are raw p-values and are not adjusted for multiple comparisons.
See Also
fit.subgroup
for function which fits subgroup identification models and
print.subgroup_summary
for arguments for printing options for summarize.subgroups()
.
Examples
library(personalized)
set.seed(123)
n.obs <- 1000
n.vars <- 50
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)
# simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,21] - 0.5 * x[,41]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)
trt <- 2 * trt01 - 1
# simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt
# continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)
# create function for fitting propensity score model
prop.func <- function(x, trt)
{
# fit propensity score model
propens.model <- cv.glmnet(y = trt,
x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",
newx = x, type = "response")[,1]
pi.x
}
subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
nfolds = 5) # option for cv.glmnet
comp <- summarize.subgroups(subgrp.model)
print(comp, p.value = 0.01)
# or we can simply supply the matrix x and the subgroups
comp2 <- summarize.subgroups(x, subgroup = 1 * (subgrp.model$benefit.scores > 0))
print(comp2, p.value = 0.01)