predict.subgroup_fitted {personalized} | R Documentation |
Function to predict either benefit scores or treatment recommendations
Description
Predicts benefit scores or treatment recommendations based on a fitted subgroup identification model
Function to obtain predictions for weighted ksvm objects
Usage
## S3 method for class 'subgroup_fitted'
predict(
object,
newx,
type = c("benefit.score", "trt.group"),
cutpoint = 0,
...
)
## S3 method for class 'wksvm'
predict(object, newx, type = c("class", "linear.predictor"), ...)
Arguments
object |
fitted object returned by For |
newx |
new design matrix for which predictions will be made |
type |
type of prediction. For |
cutpoint |
numeric value for patients with benefit scores above which
(or below which if |
... |
not used |
See Also
fit.subgroup
for function which fits subgroup identification models.
weighted.ksvm
for fitting weighted.ksvm
objects
Examples
library(personalized)
set.seed(123)
n.obs <- 500
n.vars <- 15
x <- matrix(rnorm(n.obs * n.vars, sd = 3), n.obs, n.vars)
# simulate non-randomized treatment
xbetat <- 0.5 + 0.5 * x[,11] - 0.5 * x[,3]
trt.prob <- exp(xbetat) / (1 + exp(xbetat))
trt01 <- rbinom(n.obs, 1, prob = trt.prob)
trt <- 2 * trt01 - 1
# simulate response
delta <- 2 * (0.5 + x[,2] - x[,3] - x[,11] + x[,1] * x[,12])
xbeta <- x[,1] + x[,11] - 2 * x[,12]^2 + x[,13]
xbeta <- xbeta + delta * trt
# continuous outcomes
y <- drop(xbeta) + rnorm(n.obs, sd = 2)
# create function for fitting propensity score model
prop.func <- function(x, trt)
{
# fit propensity score model
propens.model <- cv.glmnet(y = trt,
x = x, family = "binomial")
pi.x <- predict(propens.model, s = "lambda.min",
newx = x, type = "response")[,1]
pi.x
}
subgrp.model <- fit.subgroup(x = x, y = y,
trt = trt01,
propensity.func = prop.func,
loss = "sq_loss_lasso",
nfolds = 3) # option for cv.glmnet
subgrp.model$subgroup.trt.effects
benefit.scores <- predict(subgrp.model, newx = x, type = "benefit.score")
rec.trt.grp <- predict(subgrp.model, newx = x, type = "trt.group")