perARMA-package {perARMA} | R Documentation |
Periodic Time Series Analysis and Modeling
Description
This package provides procedures for periodic
time series analysis. The package includes procedures for nonparametric
spectral analysis and parametric (PARMA) identification,
estimation/fitting and prediction. The package is
equipped with three examples of periodic time series: volumes
and volumes.sep
,
which record hourly volumes of traded energy, and arosa
containing monthly ozone
levels.
Details
Package: | perARMA |
Type: | Package |
Version: | 1.6 |
Date: | 2016-02-25 |
License: | GPL(>=2.0) |
LazyLoad: | yes |
The main routines are:
Nonparametric spectral analysis: pgram
, scoh
Preliminary identification and conditioning: permest
, persigest
Identification: peracf
, Bcoeff
, perpacf
, acfpacf
Parameter estimation/fitting: perYW
, loglikec
, parmaf
, loglikef
Prediction: predictperYW
, predseries
Simulation and testing: makeparma
, parma_ident
For a complete list of procedures use library(help="perARMA")
.
Author(s)
Anna Dudek, Harry Hurd and Wioletta Wojtowicz
Maintainer: Karolina Marek <karolina.marek10@gmail.com>
References
Hurd, H. L., Miamee, A. G., (2007), Periodically Correlated Random Sequences: Spectral Theory and Practice, Wiley InterScience.
See Also
Packages for Periodic Autoregression Analysis link{pear}
,
Dynamic Systems Estimation link{dse}
and
Bayesian and Likelihood Analysis of Dynamic Linear Models link{dlm}
.
Examples
## Do not run
## It could take more than one minute
#demo(perARMA)