| parmaresid {perARMA} | R Documentation |
Computing residuals of PARMA series
Description
Procedure parmaresid, given phi (of size T \times p), del
(of size T \times 1),
theta (of size T \times q), computes the residuals of PARMA series.
Usage
parmaresid(x, stype, del, phi,...)
Arguments
x |
input time series. |
stype |
numeric parameter connected with covariance matrix computation, so far should be equal to 0 to use procedure
|
del |
vector of coefficients of length |
phi |
matrix of coefficients of size |
... |
matrix of coefficients |
Details
This program uses parmafil to filter the series and computes the covariance matrix.
This code does the Cholesky factorization and
determines the residuals from the inverse of L (see the code:
e=Linv*w0_r1). This allows the treatment of a deficient rank
covariance and a reduction of rank.
Procedure parmaresid is used in parmaf function.
Value
Series of residuals resids.
Author(s)
Harry Hurd
References
Box, G. E. P., Jenkins, G. M., Reinsel, G. (1994), Time Series Analysis, 3rd Ed., Prentice-Hall,
Englewood Cliffs, NJ.
Brockwell, P. J., Davis, R. A. (1991), Time Series: Theory and Methods, 2nd Ed., Springer: New York.
Vecchia, A., (1985), Maximum Likelihood Estimation for Periodic Autoregressive Moving Average Models, Technometrics, v. 27, pp.375-384.
See Also
Examples
## Do not run
## It could take a few seconds
data(volumes)
pmean<-permest(t(volumes),24, 0.05, NaN,'volumes', pp=0)
xd=pmean$xd
estimators<-perYW(volumes,24,2,NaN)
parmaresid(xd, 0, estimators$del, estimators$phi)