regmest_cv {pense} | R Documentation |
Cross-validation for (Adaptive) Elastic Net M-Estimates
Description
Perform (repeated) K-fold cross-validation for regmest()
.
adamest_cv()
is a convenience wrapper to compute adaptive elastic-net M-estimates.
Usage
regmest_cv(
x,
y,
standardize = TRUE,
lambda,
cv_k,
cv_repl = 1,
cv_metric = c("tau_size", "mape", "rmspe", "auroc"),
fit_all = TRUE,
cl = NULL,
...
)
adamest_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)
Arguments
x |
|
y |
vector of response values of length |
standardize |
whether to standardize the |
lambda |
optional user-supplied sequence of penalization levels.
If given and not |
cv_k |
number of folds per cross-validation. |
cv_repl |
number of cross-validation replications. |
cv_metric |
either a string specifying the performance metric to use, or a function to evaluate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The order of the given values corresponds to the order in the input data. |
fit_all |
If |
cl |
a parallel cluster. Can only be used in combination with
|
... |
Arguments passed on to
|
alpha |
elastic net penalty mixing parameter with |
alpha_preliminary |
|
exponent |
the exponent for computing the penalty loadings based on the preliminary estimate. |
Details
The built-in CV metrics are
"tau_size"
\tau
-size of the prediction error, computed bytau_size()
(default)."mape"
Median absolute prediction error.
"rmspe"
Root mean squared prediction error.
"auroc"
Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.
adamest_cv()
is a convenience wrapper which performs 3 steps:
compute preliminary estimates via
regmest_cv(..., alpha = alpha_preliminary)
,computes the penalty loadings from the estimate
beta
with best prediction performance byadamest_loadings = 1 / abs(beta)^exponent
, andcompute the adaptive PENSE estimates via
regmest_cv(..., penalty_loadings = adamest_loadings)
.
Value
a list-like object as returned by regmest()
, plus the following components:
cvres
data frame of average cross-validated performance.
a list-like object as returned by adamest_cv()
plus the following components:
exponent
value of the exponent.
preliminary
CV results for the preliminary estimate.
penalty_loadings
penalty loadings used for the adaptive elastic net M-estimate.
See Also
regmest()
for computing regularized S-estimates without cross-validation.
coef.pense_cvfit()
for extracting coefficient estimates.
plot.pense_cvfit()
for plotting the CV performance or the regularization path.
Other functions to compute robust estimates with CV:
pense_cv()
,
pensem_cv()
Other functions to compute robust estimates with CV:
pense_cv()
,
pensem_cv()
Examples
# Compute the adaptive PENSE regularization path for Freeny's
# revenue data (see ?freeny)
data(freeny)
x <- as.matrix(freeny[ , 2:5])
## Either use the convenience function directly ...
set.seed(123)
ada_convenience <- adapense_cv(x, freeny$y, alpha = 0.5,
cv_repl = 2, cv_k = 4)
## ... or compute the steps manually:
# Step 1: Compute preliminary estimates with CV
set.seed(123)
preliminary_estimate <- pense_cv(x, freeny$y, alpha = 0,
cv_repl = 2, cv_k = 4)
plot(preliminary_estimate, se_mult = 1)
# Step 2: Use the coefficients with best prediction performance
# to define the penalty loadings:
prelim_coefs <- coef(preliminary_estimate, lambda = 'min')
pen_loadings <- 1 / abs(prelim_coefs[-1])
# Step 3: Compute the adaptive PENSE estimates and estimate
# their prediction performance.
set.seed(123)
ada_manual <- pense_cv(x, freeny$y, alpha = 0.5,
cv_repl = 2, cv_k = 4,
penalty_loadings = pen_loadings)
# Visualize the prediction performance and coefficient path of
# the adaptive PENSE estimates (manual vs. automatic)
def.par <- par(no.readonly = TRUE)
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(ada_convenience$preliminary)
plot(preliminary_estimate)
plot(ada_convenience)
plot(ada_manual)
par(def.par)