my.IC {pencopulaCond}R Documentation

Calculating the AIC-value

Description

Calculating the AIC-value and cAIC-value of the copula density estimation.

Usage

my.IC(penden.env,temp=FALSE)

Arguments

penden.env

Containing all information, environment of paircopula()

temp

Default=FALSE, if TRUE temporary values of AIC and cAIC are calculated.

Details

AIC is calculated as AIC(\lambda)= - 2*l({\bf u},\hat{\bf{b}}) + 2*df(\lambda)

cAIC is calculated as cAIC(\lambda)= - 2*l({\bf u},\hat{\bf{b}}) + 2*df(\lambda) + \frac{2df(\lambda)(df(\lambda)+1)}{n-df(\lambda)-1}

BIC is calculated as BIC(\lambda)= 2*l({\bf u},\hat{\bf{b}}) + 2*df(\lambda)*log(n)

Value

AIC

sum of twice the negative non-penalized log likelihood and df(lambda)

cAIC

sum of twice the negative non-penalized log likelihood and df(lambda) and (2df(lambda)(df(lambda)+1))/(n-df(lambda)-1)

BIC

sum of twice the non-penalized log likelihood and log(n)*df(lambda)

All values are saved in the environment.

Author(s)

Christian Schellhase <cschellhase@wiwi.uni-bielefeld.de>

References

Flexible Copula Density Estimation with Penalized Hierarchical B-Splines, Kauermann G., Schellhase C. and Ruppert, D. (2013), Scandinavian Journal of Statistics 40(4), 685-705.

Estimating Non-Simplified Vine Copulas Using Penalized Splines, Schellhase, C. and Spanhel, F. (2017), Statistics and Computing.


[Package pencopulaCond version 0.2 Index]