survpred_prcmlpmm {pencal} | R Documentation |
Compute the predicted survival probabilities obtained from the PRC models
Description
This function computes the predicted survival probabilities for the for the PRC-MLPMM(U) and PRC-MLPMM(U+B) models proposed in Signorelli et al. (2021)
Usage
survpred_prcmlpmm(step2, step3, times = 1)
Arguments
step2 |
the output of |
step3 |
the output of |
times |
numeric vector with the time points at which to estimate the time-dependent AUC |
Value
A data frame with the predicted survival probabilities computed at the supplied time points
Author(s)
Mirko Signorelli
References
Signorelli, M. (2024). pencal: an R Package for the Dynamic Prediction of Survival with Many Longitudinal Predictors. To appear in: The R Journal. Preprint: arXiv:2309.15600
Signorelli, M., Spitali, P., Al-Khalili Szigyarto, C, The MARK-MD Consortium, Tsonaka, R. (2021). Penalized regression calibration: a method for the prediction of survival outcomes using complex longitudinal and high-dimensional data. Statistics in Medicine, 40 (27), 6178-6196. DOI: 10.1002/sim.9178
See Also
fit_mlpmms
(step 1),
summarize_mlpmms
(step 2) and
fit_prcmlpmm
(step 3).
Examples
data(fitted_prcmlpmm)
# predict survival probabilities at times 3 to 6
surv.probs = survpred_prcmlpmm(fitted_prcmlpmm$step2,
fitted_prcmlpmm$step3, times = 3:6)
ls(surv.probs)
head(surv.probs$predicted_survival)