IntervalRegressionRegularized {penaltyLearning} | R Documentation |
IntervalRegressionRegularized
Description
Repeatedly use IntervalRegressionInternal
to solve interval
regression problems for a path of regularization parameters. This
function does not perform automatic selection of the
regularization parameter; instead, it returns regression models
for a range of regularization parameters, and it is up to you to
select which one to use. For automatic regularization parameter
selection, use IntervalRegressionCV
.
Usage
IntervalRegressionRegularized(feature.mat,
target.mat, initial.regularization = 0.001,
factor.regularization = 1.2,
verbose = 0, margin = 1,
...)
Arguments
feature.mat |
Numeric feature matrix. |
target.mat |
Numeric target matrix. |
initial.regularization |
Initial regularization parameter. |
factor.regularization |
Increase regularization by this factor after finding an optimal
solution. Or NULL to compute just one model
( |
verbose |
Print messages if >= 1. |
margin |
Non-negative |
... |
Other parameters to pass to |
Value
List representing fit model. You can do fit$predict(feature.matrix) to get a matrix of predicted log penalty values. The param.mat is the n.features * n.regularization numeric matrix of optimal coefficients (on the original scale).
Author(s)
Toby Dylan Hocking
Examples
if(interactive()){
library(penaltyLearning)
data("neuroblastomaProcessed", package="penaltyLearning", envir=environment())
i.train <- 1:500
fit <- with(neuroblastomaProcessed, IntervalRegressionRegularized(
feature.mat[i.train,], target.mat[i.train,]))
plot(fit)
}