IntervalRegressionCVmargin {penaltyLearning} | R Documentation |
IntervalRegressionCVmargin
Description
Use cross-validation to fit an L1-regularized linear interval
regression model by optimizing both margin and regularization
parameters. This function just calls IntervalRegressionCV
with a
margin.vec parameter that is computed based on the finite target
interval limits. If default parameters are used, this function
should be about 10 times slower than IntervalRegressionCV
(since this function computes n.margin=10 models
per regularization parameter whereas IntervalRegressionCV
only computes one).
On large (N > 1000 rows) data sets,
this function should yield a model which is a little
more accurate than IntervalRegressionCV
(since the margin parameter is optimized).
Usage
IntervalRegressionCVmargin(feature.mat,
target.mat, log10.diff = 2,
n.margin = 10L, ...)
Arguments
feature.mat |
Numeric feature matrix, n observations x p features. |
target.mat |
Numeric target matrix, n observations x 2 limits. |
log10.diff |
Numeric scalar: factors of 10 below the largest finite limit
difference to use as a minimum margin value (difference on the
log10 scale which is used to generate margin parameters). Bigger
values mean a grid of margin parameters with a larger range. For
example if the largest finite limit in |
n.margin |
Integer scalar: number of margin parameters, by default 10. |
... |
Passed to |
Value
Model fit list from IntervalRegressionCV
.
Author(s)
Toby Dylan Hocking
Examples
if(interactive()){
library(penaltyLearning)
data(
"neuroblastomaProcessed",
package="penaltyLearning",
envir=environment())
if(require(future)){
plan(multiprocess)
}
set.seed(1)
fit <- with(neuroblastomaProcessed, IntervalRegressionCVmargin(
feature.mat, target.mat, verbose=1))
plot(fit)
print(fit$plot.heatmap)
}