lla {penalizedcdf} | R Documentation |
LLA approximation for CDF penalty
Description
Linearly approximate a part of the objective function to greatly speed up computations.
Usage
lla(b.o,
lmb.rho,
bm_gm,
nu,
nstep.lla = 100L,
eps.lla = 1E-6)
Arguments
b.o |
Vector of sparse-solution. |
lmb.rho |
Lambda-rho ratio. |
bm_gm |
Vector of pseudo-solution |
nu |
Shape parameter of the penalty. |
nstep.lla |
Maximum number of iterations of the LLA-algorithm (if used). |
eps.lla |
Convergence threshhold of the LLA-algorithm (if used). |
Details
The LLA approximation allows the computationally intensive part to be treated as a weighted LASSO (Tibshirani, 1996) problem. In this way the computational effort is significantly less while maintaining satisfactory accuracy of the results. See Zou and Li (2008).
Value
b |
Vector of the estimated sparse-solution. |
Conv |
Convergence check (0 if converged). |
nstep.lla |
Number of iterations done. |
References
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.
Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of statistics, 36(4):1509