findgacv.scad {penalizedSVM} | R Documentation |
Calculate Generalized Approximate Cross Validation Error Estimation for SCAD SVM model
Description
calculate generalized approximate cross validation error (GACV) estimation for SCAD SVM model
Usage
findgacv.scad(y, model)
Arguments
y |
vector of class labels (only for 2 classes) |
model |
list, describing SCAD SVM model, produced by function scadsvc |
Value
returns the GACV value
Author(s)
Natalia Becker
natalie_becker@gmx.de
References
Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines with nonconvex penalty. Bioinformatics, 22, pp. 88-95.
Wahba G., Lin, Y. and Zhang, H. (2000). GACV for support vector machines, or, another way to look at margin-like quantities, in A. J. Smola, P. Bartlett, B. Schoelkopf and D. Schurmans (eds), Advances in Large Margin Classifiers, MIT Press, pp. 297-309.
See Also
scadsvc
, predict.penSVM
, sim.data
Examples
# simulate data
train<-sim.data(n = 200, ng = 100, nsg = 10, corr=FALSE, seed=12)
print(str(train))
# train data
ff <- scadsvc(as.matrix(t(train$x)), y=train$y, lambda=0.01)
print(str(ff))
# estimate gacv error
(gacv<- findgacv.scad(train$y, model=ff))
[Package penalizedSVM version 1.1.4 Index]