marginal_mle {pempi} | R Documentation |
Compute (marginalized) MLE based on the partial information R1 and R3.
Description
Proportion estimated using the MLE and confidence intervals based the asymptotic distribution of the estimator.
Usage
marginal_mle(
R1,
R3,
n,
pi0,
gamma = 0.05,
alpha = 0,
beta = 0,
alpha0 = 0,
V = NULL,
...
)
Arguments
R1 |
A |
R3 |
A |
n |
A |
pi0 |
A |
gamma |
A |
alpha |
A |
beta |
A |
alpha0 |
A |
V |
A |
... |
Additional arguments. |
Value
A cpreval
object with the structure:
estimate: Estimated proportion.
sd: Estimated standard error of the estimator.
ci_asym: Asymptotic confidence interval at the 1 - gamma confidence level.
gamma: Confidence level (i.e. 1 - gamma) for confidence intervals.
method: Estimation method (in this case marginal mle).
measurement: A vector with (alpha0, alpha, beta).
beta0: Estimated false negative rate of the official procedure.
ci_beta0: Asymptotic confidence interval (1 - gamma confidence level) for beta0.
boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
pi0: Value of pi0 (input value).
sampling: Type of sampling considered ("random" or "weighted").
V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
n: Sample size.
avar_beta0: Estimated asymptotic variance of beta0
...: Additional parameters
Author(s)
Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics
Examples
# Samples without measurement error
X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, n = X$n, pi0 = X$pi0)
# With measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha0 = 0.001,
alpha = 0.01, beta0 = 0.05, beta = 0.05, seed = 18)
marginal_mle(R1 = X$R1, R3 = X$R3, n = X$n, pi0 = X$pi0)
marginal_mle(R1 = X$R1, R3 = X$R3, n = X$n, pi0 = X$pi0,
alpha0 = 0.001, alpha = 0.01, beta0 = 0.05, beta = 0.05)