| plot.pec {pec} | R Documentation |
Plotting prediction error curves
Description
Plotting prediction error curves for one or more prediction models.
Usage
## S3 method for class 'pec'
plot(
x,
what,
models,
xlim = c(x$start, x$minmaxtime),
ylim = c(0, 0.3),
xlab = "Time",
ylab,
axes = TRUE,
col,
lty,
lwd,
type,
smooth = FALSE,
add.refline = FALSE,
add = FALSE,
legend = ifelse(add, FALSE, TRUE),
special = FALSE,
...
)
Arguments
x |
Object of class |
what |
The name of the entry in |
models |
Specifies models in |
xlim |
Plotting range on the x-axis. |
ylim |
Plotting range on the y-axis. |
xlab |
Label given to the x-axis. |
ylab |
Label given to the y-axis. |
axes |
Logical. If |
col |
Vector of colors given to the curves of |
lty |
Vector of lty's given to the curves of |
lwd |
Vector of lwd's given to the curves of |
type |
Plotting type: either |
smooth |
Logical. If |
add.refline |
Logical. If |
add |
Logical. If |
legend |
if TRUE a legend is plotted by calling the function legend.
Optional arguments of the function |
special |
Logical. If |
... |
Extra arguments that are passed to |
Details
From version 2.0.1 on the arguments legend.text, legend.args, lines.type,
lwd.lines, specials are obsolete and only available for backward
compatibility. Instead arguments for the invoked functions legend,
axis, Special are simply specified as legend.lty=2. The
specification is not case sensitive, thus Legend.lty=2 or
LEGEND.lty=2 will have the same effect. The function axis is
called twice, and arguments of the form axis1.labels, axis1.at
are used for the time axis whereas axis2.pos, axis1.labels,
etc. are used for the y-axis.
These arguments are processed via ...{} of plot.pec and
inside by using the function resolveSmartArgs. Documentation of
these arguments can be found in the help pages of the corresponding
functions.
Value
The (invisible) object.
Author(s)
Ulla B. Mogensen ulmo@biostat.ku.dk, Thomas A. Gerds tag@biostat.ku.dk
See Also
Examples
# simulate data
# with a survival response and two predictors
library(prodlim)
library(survival)
set.seed(280180)
dat <- SimSurv(100)
# fit some candidate Cox models and
# compute the Kaplan-Meier estimate
Models <- list("Kaplan.Meier"=survfit(Surv(time,status)~1,data=dat),
"Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
"Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
"Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE))
Models <- list("Cox.X1"=coxph(Surv(time,status)~X1,data=dat,x=TRUE,y=TRUE),
"Cox.X2"=coxph(Surv(time,status)~X2,data=dat,x=TRUE,y=TRUE),
"Cox.X1.X2"=coxph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE))
# compute the .632+ estimate of the generalization error
set.seed(17100)
PredError.632plus <- pec(object=Models,
formula=Surv(time,status)~X1+X2,
data=dat,
exact=TRUE,
cens.model="marginal",
splitMethod="boot632plus",
B=5,
keep.matrix=TRUE,
verbose=TRUE)
# plot the .632+ estimates of the generalization error
plot(PredError.632plus,xlim=c(0,30))
# plot the bootstrapped curves, .632+ estimates of the generalization error
# and Apparent error for the Cox model 'Cox.X1' with the 'Cox.X2' model
# as benchmark
plot(PredError.632plus,
xlim=c(0,30),
models="Cox.X1",
special=TRUE,
special.bench="Cox.X2",
special.benchcol=2,
special.addprederr="AppErr")