wald.fct {pdynmc} | R Documentation |
Wald Test.
Description
wald.fct
computes F test statistics and corresponding p-values for
'pdynmc' objects.
Usage
wald.fct(object, param)
Arguments
object |
An object of class 'pdynmc'. |
param |
A character string that denotes the null hypothesis. Choices are time.dum (i.e., all time dummies are jointly zero), slope (i.e., all slope coefficients are jointly zero), and all (i.e., all dummies and slope coefficients are jointly zero). |
Details
The three available null hypothesis are: All time dummies are jointly zero, all slope coefficients are jointly zero, all times dummies and slope coefficients are jointly zero.
Value
An object of class 'htest' which contains the F test statistic and corresponding p-value for the tested null hypothesis.
See Also
pdynmc
for fitting a linear dynamic panel data model.
Examples
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
dat <- dat[c(140:0), ]
## Code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
wald.fct(param = "all", m1)
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
## Further code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
wald.fct(m1, param = "all")
[Package pdynmc version 0.9.11 Index]