variable.names.pdynmc {pdynmc} | R Documentation |
Extract Names of Explanatory Variables of Fitted Model.
Description
variable.names.pdynmc
extracts explanatory variables
from an object of class 'pdynmc'.
Usage
## S3 method for class 'pdynmc'
variable.names(object, ...)
Arguments
object |
An object of class 'pdynmc'. |
... |
further arguments. |
Value
Extract explanatory variables from an object of class 'pdynmc'.
Author(s)
Markus Fritsch
See Also
pdynmc
for fitting a linear dynamic panel data model.
Examples
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
dat <- dat[c(1:140), ]
## Code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
variable.names(m1)
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
variable.names(m1)
[Package pdynmc version 0.9.11 Index]