mtest.fct {pdynmc} | R Documentation |
Arellano and Bond Serial Correlation Test.
Description
mtest.pdynmc
Methods to test for serial correlation in the error terms
for objects of class 'pdynmc'.
Usage
mtest.fct(object, order = 2, ...)
Arguments
object |
An object of class 'pdynmc'. |
order |
A number denoting the order of serial correlation to test for (defaults to '2'). |
... |
further arguments. |
Details
The null hypothesis is that there is no serial correlation of a particular order. The test statistic is computed as proposed by Arellano and Bond (1991) and Arellano (2003).
Value
An object of class 'htest' which contains the Arellano and Bond m test statistic and corresponding p-value for the null hypothesis that there is no serial correlation of the given order.
References
Arellano M (2003).
Panel Data Econometrics.
Oxford University Press.
doi:10.1093/0199245282.001.0001.
Arellano M, Bond S (1991).
“Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.”
The Review of Economic Studies, 58(2), 277–297.
doi:10.2307/2297968.
See Also
pdynmc
for fitting a linear dynamic panel data model.
Examples
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
dat <- dat[c(140:0), ]
## Code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
mtest.fct(m1, order = 2)
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
## Further code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
opt.meth = "none")
mtest.fct(m1, order = 2)