hprop2f {pdfCluster} | R Documentation |
Sample smoothing parameters in adaptive density estimation
Description
This function computes the sample smoothing parameters to be used in adaptive kernel density estimation, according to Silverman (1986).
Usage
hprop2f(x, h = h.norm(x), alpha = 1/2, kernel = "gaussian")
Arguments
x |
Vector or matrix of data. |
h |
Vector of smoothing parameters to be used to get a pilot estimate of the density function. It has length equal to |
alpha |
Sensitivity parameter satysfying |
kernel |
Kernel to be used to compute the pilot density estimate. It should be one of
"gaussian" or "t7". See |
Details
A vector of smoothing parameters h_{i}
is chosen for each sample point x_i
, as follows:
h_i = h \left(\frac{\hat{f}_h(x_i)}{g}\right)^{- \alpha }
where \hat{f}_h
is a pilot kernel density estimate of the density function f
, with vector of bandwidths h
,
and g
is the geometric mean of \hat{f}_h(x_i)
,
i=1, ..., n
.
See Section 5.3.1 of the reference below.
Value
Returns a matrix with the same dimensions of x
where row i
provides
the vector of smoothing parameters for sample point x_i
.
References
Silverman, B. (1986). Density estimation for statistics and data analysis. Chapman and Hall, London.
See Also
h.norm
Examples
set.seed(123)
x <- rnorm(10)
sm.par <- hprop2f(x)
pdf <- kepdf(x, bwtype= "adaptive")
pdf@par$hx
sm.par
plot(pdf,eval.points=seq(-4,4,by=.2))