Tileries {pder} | R Documentation |
Production of Tileries in Egypt
Description
weeklyly observations of 25 firms from 1982 to 1983
number of observations : 483
number of time-series : 22
country : Egypt
package : panelproduction
JEL codes: D24, C13, C51, C23, J31
Chapter : 01, 03
Usage
data(Tileries)
Format
A dataframe containing:
- id
firm id
- week
week (3 weeks aggregated)
- area
one of
"fayoum"
and"kalyubiya"
- output
output
- labor
labor hours
- machine
machine hours
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Horrace and Schmidt (1996) “Confidence Statements for Efficiency Estimates From Stochastic Frontier Models”, Journal of Productity Analysis, 7, 257–282, doi: 10.1007/BF00157044 .
Horrace and Schmidt (2012) “Multiple Comparisons with the Best, with Economic Applications”, Journal of Applied Econometrics, 15(1), 1–26, doi: 10.1002/(SICI)1099-1255(200001/02)15:1<1::AID-JAE551>3.0.CO;2-Y .
Seale J.L. (1990) “Estimating Stochastic Frontier Systems with Unbalanced Panel Data: the Case of Floor Tile Manufactories in Egypt”, Journal of Applied Econometrics, 5, 59–79, doi: 10.1002/jae.3950050105 .
Examples
#### Example 1-2
## ------------------------------------------------------------------------
data("Tileries", package = "pder")
library("plm")
coef(summary(plm(log(output) ~ log(labor) + machine, data = Tileries,
subset = area == "fayoum")))
## ------------------------------------------------------------------------
coef(summary(plm(log(output) ~ log(labor) + machine, data = Tileries,
model = "pooling", subset = area == "fayoum")))
#### Example 1-5
## ------------------------------------------------------------------------
data("Tileries", package = "pder")
til.fm <- log(output) ~ log(labor) + log(machine)
lm.mod <- lm(til.fm, data = Tileries, subset = area == "fayoum")
## ------------------------------------------------------------------------
if (requireNamespace("car")){
library("car")
lht(lm.mod, "log(labor) + log(machine) = 1")
## ------------------------------------------------------------------------
library("car")
lht(lm.mod, "log(labor) + log(machine) = 1", vcov=vcovHC)
}
#### Example 1-6
## ------------------------------------------------------------------------
plm.mod <- plm(til.fm, data = Tileries, subset = area == "fayoum")
## ------------------------------------------------------------------------
if (requireNamespace("car")){
library("car")
lht(plm.mod, "log(labor) + log(machine) = 1", vcov = vcovHC)
}
#### Example 3-1
## ------------------------------------------------------------------------
library(plm)
data("Tileries", package = "pder")
head(Tileries, 3)
pdim(Tileries)
## ------------------------------------------------------------------------
Tileries <- pdata.frame(Tileries)
plm.within <- plm(log(output) ~ log(labor) + log(machine), Tileries)
y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)
lm.within <- lm(I(y - Between(y)) ~ I(x1 - Between(x1)) + I(x2 - Between(x2)) - 1)
lm.lsdv <- lm(log(output) ~ log(labor) + log(machine) + factor(id), Tileries)
coef(lm.lsdv)[2:3]
coef(lm.within)
coef(plm.within)
## ------------------------------------------------------------------------
tile.r <- plm(log(output) ~ log(labor) + log(machine), Tileries, model = "random")
summary(tile.r)
## ------------------------------------------------------------------------
plm.within <- plm(log(output) ~ log(labor) + log(machine),
Tileries, effect = "twoways")
lm.lsdv <- lm(log(output) ~ log(labor) + log(machine) +
factor(id) + factor(week), Tileries)
y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)
y <- y - Between(y, "individual") - Between(y, "time") + mean(y)
x1 <- x1 - Between(x1, "individual") - Between(x1, "time") + mean(x1)
x2 <- x2 - Between(x2, "individual") - Between(x2, "time") + mean(x2)
lm.within <- lm(y ~ x1 + x2 - 1)
coef(plm.within)
coef(lm.within)
coef(lm.lsdv)[2:3]
## ------------------------------------------------------------------------
wh <- plm(log(output) ~ log(labor) + log(machine), Tileries,
model = "random", random.method = "walhus",
effect = "twoways")
am <- update(wh, random.method = "amemiya")
sa <- update(wh, random.method = "swar")
ercomp(sa)
## ------------------------------------------------------------------------
re.models <- list(walhus = wh, amemiya = am, swar = sa)
sapply(re.models, function(x) sqrt(ercomp(x)$sigma2))
sapply(re.models, coef)