RDSpillovers {pder} | R Documentation |
Research and Development Spillovers Data
Description
a cross-section of 119 industries from 1980 to 2005
country : world
package : panel
JEL codes: C51, D24, O32, O33
Chapter : 04, 05, 09
Usage
data(RDSpillovers)
Format
A dataframe containing:
- id
country-industry index
- year
year
- country
country
- sector
manufacturing sector as SIC 15-37, excluding SIC 23
- lny
log output
- lnl
log of labour input
- lnk
log of physical capital stock
- lnrd
log of RD capital stock
Source
author's web site https://sites.google.com/site/medevecon/home
References
Eberhardt, M.; Helmers, C. and H. Strauss (2013) “Do Spillovers Matter in Estimating Private Returns to R and D?”, The Review of Economics and Statistics, 95(2), 436–448, doi: 10.1162/REST_a_00272 .
Examples
#### Example 4-10
## ------------------------------------------------------------------------
## Not run:
data("RDSpillovers", package = "pder")
library("plm")
fm.rds <- lny ~ lnl + lnk + lnrd
## ------------------------------------------------------------------------
pcdtest(fm.rds, RDSpillovers)
## ------------------------------------------------------------------------
rds.2fe <- plm(fm.rds, RDSpillovers, model = "within", effect = "twoways")
pcdtest(rds.2fe)
## ------------------------------------------------------------------------
cbind("rho" = pcdtest(rds.2fe, test = "rho")$statistic,
"|rho|"= pcdtest(rds.2fe, test = "absrho")$statistic)
#### Example 5-10
## ------------------------------------------------------------------------
data("RDSpillovers", package = "pder")
pehs <- pdata.frame(RDSpillovers, index = c("id", "year"))
ehsfm <- lny ~ lnl + lnk + lnrd
phtest(ehsfm, pehs, method = "aux")
## ------------------------------------------------------------------------
phtest(ehsfm, pehs, method = "aux", vcov = vcovHC)
#### Example 5-15
## ------------------------------------------------------------------------
fm <- lny ~ lnl + lnk + lnrd
## ------------------------------------------------------------------------
if (requireNamespace("lmtest")){
library("lmtest")
gglsmodehs <- pggls(fm, RDSpillovers, model = "pooling")
coeftest(gglsmodehs)
feglsmodehs <- pggls(fm, RDSpillovers, model = "within")
coeftest(feglsmodehs)
phtest(gglsmodehs, feglsmodehs)
fdglsmodehs <- pggls(fm, RDSpillovers, model = "fd")
fee <- resid(feglsmodehs)
dbfee <- data.frame(fee=fee, id=attr(fee, "index")[[1]])
coeftest(plm(fee~lag(fee)+lag(fee,2), dbfee, model = "p", index="id"))
fde <- resid(fdglsmodehs)
dbfde <- data.frame(fde=fde, id=attr(fde, "index")[[1]])
coeftest(plm(fde~lag(fde)+lag(fde,2), dbfde, model = "p", index="id"))
coeftest(fdglsmodehs)
}
#### Example 9-7
## ------------------------------------------------------------------------
ccep.rds <- pcce(fm.rds, RDSpillovers, model="p")
if (requireNamespace("lmtest")){
library("lmtest")
ccep.tab <- cbind(coeftest(ccep.rds)[, 1:2],
coeftest(ccep.rds, vcov = vcovNW)[, 2],
coeftest(ccep.rds, vcov = vcovHC)[, 2])
dimnames(ccep.tab)[[2]][2:4] <- c("Nonparam.", "vcovNW", "vcovHC")
round(ccep.tab, 3)
}
## ------------------------------------------------------------------------
autoreg <- function(rho = 0.1, T = 100){
e <- rnorm(T+1)
for (t in 2:(T+1)) e[t] <- e[t]+rho*e[t-1]
e
}
set.seed(20)
f <- data.frame(time = rep(0:40, 2),
rho = rep(c(0.2, 1), each = 41),
y = c(autoreg(rho = 0.2, T = 40),
autoreg(rho = 1, T = 40)))
if (requireNamespace("ggplot2")){
library("ggplot2")
ggplot(f, aes(time, y)) + geom_line() + facet_wrap(~ rho) + xlab("") + ylab("")
autoreg <- function(rho = 0.1, T = 100){
e <- rnorm(T)
for (t in 2:(T)) e[t] <- e[t] + rho *e[t-1]
e
}
tstat <- function(rho = 0.1, T = 100){
y <- autoreg(rho, T)
x <- autoreg(rho, T)
z <- lm(y ~ x)
coef(z)[2] / sqrt(diag(vcov(z))[2])
}
result <- c()
R <- 1000
for (i in 1:R) result <- c(result, tstat(rho = 0.2, T = 40))
quantile(result, c(0.025, 0.975))
prop.table(table(abs(result) > 2))
result <- c()
R <- 1000
for (i in 1:R) result <- c(result, tstat(rho = 1, T = 40))
quantile(result, c(0.025, 0.975))
prop.table(table(abs(result) > 2))
R <- 1000
T <- 100
result <- c()
for (i in 1:R){
y <- autoreg(rho=1, T=100)
Dy <- y[2:T] - y[1:(T-1)]
Ly <- y[1:(T-1)]
z <- lm(Dy ~ Ly)
result <- c(result, coef(z)[2] / sqrt(diag(vcov(z))[2]))
}
ggplot(data.frame(x = result), aes(x = x)) +
geom_histogram(fill = "white", col = "black",
bins = 20, aes(y = ..density..)) +
stat_function(fun = dnorm) + xlab("") + ylab("")
prop.table(table(result < -1.64))
}
## End(Not run)
[Package pder version 1.0-2 Index]