Expm {pdSpecEst} | R Documentation |
Riemannian HPD exponential map
Description
Expm(P, H)
computes the projection of a Hermitian matrix H
from the tangent space at a Hermitian
PD matrix P
to the manifold of Hermitian PD matrices equipped with the affine-invariant Riemannian metric
via the exponential map as in e.g., (Pennec et al. 2006). This is the unique inverse of the Riemannian
logarithmic map Logm
.
Usage
Expm(P, H)
Arguments
P |
a Hermitian positive definite matrix. |
H |
a Hermitian matrix (of equal dimension as |
References
Pennec X, Fillard P, Ayache N (2006). “A Riemannian framework for tensor computing.” International Journal of Computer Vision, 66(1), 41–66.
See Also
Examples
## Generate random Hermitian matrix
H <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
diag(H) <- rnorm(3)
H[lower.tri(H)] <- t(Conj(H))[lower.tri(H)]
## Generate random HPD matrix
p <- matrix(complex(real = rnorm(9), imaginary = rnorm(9)), nrow = 3)
P <- t(Conj(p)) %*% p
## Compute exponential map
Expm(P, H)
[Package pdSpecEst version 1.2.4 Index]