parcovmatlist {pcts} | R Documentation |
Compute asymptotic covariance matrix for PAR model
Description
Compute asymptotic covariance matrix for PAR model
Usage
parcovmatlist(parmodel, n, cor = FALSE, result = "list")
Arguments
parmodel |
PAR model, object of class |
n |
length of the series or a vector with one element for each season. |
cor |
If TRUE return correlation matrix. |
result |
if "list", the default, return a list, if "Matrix" return a Matrix object, otherwise return an ordinary matrix, see Details. |
Details
Uses eq. (3.3) in the reference.
If result = "list"
, parcovmatlist
returns a list whose
s-th element is the covariance matrix of the PAR parameters for the
s-th season. Otherwise, if result = "Matrix"
it returns a
block-diagonal matrix created by .bdiag()
from package
"Matrix". If result = "matrix"
it returns an ordinary matrix
(with the current implementation this is returned for any value other
than "list" or "Matriix").
Value
a list, matrix or block-diagonal matrix, as described in Details
Author(s)
Georgi N. Boshnakov
References
McLeod AI (1994). “Diagnostic checking of periodic autoregression models with application.” Journal of Time Series Analysis, 15(2), 221–233.
See Also
Examples
x <- arima.sim(list(ar=0.9), n=1000)
proba1 <- fitPM(c(3,2,2,2), x)
parcovmatlist(proba1, 100)
parcovmatlist(proba1, 100, cor = TRUE)
sqrt(diag(parcovmatlist(proba1, 100, cor = TRUE)[[1]]))
meanvarcheck(proba1, 100)