rseg.tri {pcds} | R Documentation |
Generation of points segregated (in a Type I fashion) from the vertices of a triangle
Description
An object of class "Patterns"
.
Generates n
points uniformly in the support
for Type I segregation in a given triangle, tri
.
delta
is the parameter of segregation (that is,
% of the area around each vertex
in the triangle is forbidden for point generation).
delta
corresponds to eps
in the
standard equilateral triangle as
(see
rseg.std.tri
function).
See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the segregation pattern.
Usage
rseg.tri(n, tri, delta)
Arguments
n |
A positive integer representing the number of points
to be generated from the segregation pattern
in the triangle, |
tri |
A |
delta |
A positive real number in |
Value
A list
with the elements
type |
The type of the pattern from which points are to be generated |
mtitle |
The |
parameters |
Exclusion parameter, |
ref.points |
The input set of points, i.e., vertices of |
gen.points |
The output set of generated points segregated
from the vertices of |
tri.Y |
Logical output,
if |
desc.pat |
Description of the point pattern |
num.points |
The |
xlimit , ylimit |
The ranges of the |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2011).
“Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family.”
Communications in Statistics - Theory and Methods, 40(8), 1363-1395.
Ceyhan E, Priebe CE, Marchette DJ (2007).
“A new family of random graphs for testing spatial segregation.”
Canadian Journal of Statistics, 35(1), 27-50.
Ceyhan E, Priebe CE, Wierman JC (2006).
“Relative density of the random -factor proximity catch digraphs for testing spatial patterns of segregation and association.”
Computational Statistics & Data Analysis, 50(8), 1925-1964.
See Also
rassoc.tri
, rseg.std.tri
,
rsegII.std.tri
, and rseg.multi.tri
Examples
n<-100
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)
del<-.4
Xdt<-rseg.tri(n,Tr,del)
Xdt
summary(Xdt)
plot(Xdt)
Xp<-Xdt$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Points from Type I Segregation \n in one Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)