rel.vert.tri {pcds} | R Documentation |
The index of the vertex region in a triangle that contains a given point
Description
Returns the index of the related vertex
in the triangle, tri
,
whose region contains point p
.
Vertex regions are based on the general center M=(m_1,m_2)
in Cartesian coordinates or
M=(\alpha,\beta,\gamma)
in barycentric coordinates
in the interior of the triangle tri
.
Vertices of the triangle tri
are labeled
according to the row number the vertex is recorded.
If the point, p
, is not inside tri
,
then the function yields NA
as output.
The corresponding vertex region is the polygon
with the vertex, M
, and projections from M
to the edges on the lines joining vertices
and M
(see the illustration in the examples).
See also (Ceyhan (2005, 2010)).
Usage
rel.vert.tri(p, tri, M)
Arguments
p |
A 2D point for which |
tri |
A |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle |
Value
A list
with two elements
rv |
Index of the vertex whose region contains point, |
tri |
The vertices of the triangle, |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
rel.vert.triCM
, rel.vert.triCC
,
rel.vert.basic.triCC
, rel.vert.basic.triCM
,
rel.vert.basic.tri
, and rel.vert.std.triCM
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)
P<-c(1.5,1.6)
rel.vert.tri(P,Tr,M)
#try also rel.vert.tri(P,Tr,M=c(2,2))
#center is not in the interior of the triangle
n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
Rv<-vector()
for (i in 1:n)
{Rv<-c(Rv,rel.vert.tri(Xp[i,],Tr,M)$rv)}
Rv
Ds<-prj.cent2edges(Tr,M)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Illustration of M-Vertex Regions\n in a Triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,0)
yc<-txt[,2]+c(-.02,.04,.05,-.08)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))