| rel.vert.tri {pcds} | R Documentation |
The index of the vertex region in a triangle that contains a given point
Description
Returns the index of the related vertex
in the triangle, tri,
whose region contains point p.
Vertex regions are based on the general center M=(m_1,m_2)
in Cartesian coordinates or
M=(\alpha,\beta,\gamma) in barycentric coordinates
in the interior of the triangle tri.
Vertices of the triangle tri are labeled
according to the row number the vertex is recorded.
If the point, p, is not inside tri,
then the function yields NA as output.
The corresponding vertex region is the polygon
with the vertex, M, and projections from M
to the edges on the lines joining vertices
and M (see the illustration in the examples).
See also (Ceyhan (2005, 2010)).
Usage
rel.vert.tri(p, tri, M)
Arguments
p |
A 2D point for which |
tri |
A |
M |
A 2D point in Cartesian coordinates
or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle |
Value
A list with two elements
rv |
Index of the vertex whose region contains point, |
tri |
The vertices of the triangle, |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
rel.vert.triCM, rel.vert.triCC,
rel.vert.basic.triCC, rel.vert.basic.triCM,
rel.vert.basic.tri, and rel.vert.std.triCM
Examples
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)
P<-c(1.5,1.6)
rel.vert.tri(P,Tr,M)
#try also rel.vert.tri(P,Tr,M=c(2,2))
#center is not in the interior of the triangle
n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
Rv<-vector()
for (i in 1:n)
{Rv<-c(Rv,rel.vert.tri(Xp[i,],Tr,M)$rv)}
Rv
Ds<-prj.cent2edges(Tr,M)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Illustration of M-Vertex Regions\n in a Triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,0)
yc<-txt[,2]+c(-.02,.04,.05,-.08)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))