| rel.vert.tetraCM {pcds} | R Documentation |
The index of the CM-vertex region in a tetrahedron
that contains a point
Description
Returns the index of the vertex
whose region contains point p in
a tetrahedron th=T(A,B,C,D)
and vertex regions are
based on the center of mass CM=(A+B+C+D)/4 of th.
(see the plots in the example for illustrations).
The vertices of the tetrahedron th are labeled as
1=A, 2=B, 3=C, and 4=C also
according to the row number the vertex is recorded in th.
If the point, p, is not inside th,
then the function yields NA as output.
The corresponding vertex region is the simplex with the vertex, CM, and
midpoints of the edges adjacent to the vertex.
See also (Ceyhan (2005, 2010)).
Usage
rel.vert.tetraCM(p, th)
Arguments
p |
A 3D point for which |
th |
A |
Value
A list with two elements
rv |
Index of the |
th |
The vertices of the tetrahedron,
where row number corresponds to the vertex index in |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
See Also
rel.vert.tetraCC and rel.vert.triCM
Examples
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-20 #try also n<-40
Xp<-runif.std.tetra(n)$g
rel.vert.tetraCM(Xp[1,],tetra)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv, rel.vert.tetraCM(Xp[i,],tetra)$rv )
Rv
Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
CM<-apply(tetra,2,mean)
plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3], phi =0,theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CM[1],CM[2],CM[3], labels=c("CM"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CM,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty = 2)
F1<-intersect.line.plane(A,CM,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2,
add=TRUE,lty = 2)
F2<-intersect.line.plane(B,CM,A,C,D)
L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3,
add=TRUE,lty = 2)
F3<-intersect.line.plane(C,CM,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4,
add=TRUE,lty = 2)
F4<-intersect.line.plane(D,CM,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5,
add=TRUE,lty = 2)
plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)