rel.vert.tetraCC {pcds} | R Documentation |
The index of the CC
-vertex region in a tetrahedron
that contains a point
Description
Returns the index of the vertex
whose region contains point p
in
a tetrahedron th=T(A,B,C,D)
and vertex regions are based on the circumcenter CC
of th
.
(see the plots in the example for illustrations).
The vertices of the tetrahedron th
are labeled as
1=A
, 2=B
, 3=C
, and 4=C
also
according to the row number the vertex is recorded in th
.
If the point, p
, is not inside th
,
then the function yields NA
as output.
The corresponding vertex region is the polygon
whose interior points are closest to that vertex.
If th
is regular tetrahedron,
then CC
and CM
(center of mass) coincide.
See also (Ceyhan (2005, 2010)).
Usage
rel.vert.tetraCC(p, th)
Arguments
p |
A 3D point for which |
th |
A |
Value
A list
with two elements
rv |
Index of the |
tri |
The vertices of the tetrahedron,
where row number corresponds to the vertex index in |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
See Also
rel.vert.tetraCM
and rel.vert.triCC
Examples
set.seed(123)
A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)
n<-20 #try also n<-40
Xp<-runif.tetra(n,tetra)$g
rel.vert.tetraCC(Xp[1,],tetra)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.tetraCC(Xp[i,],tetra)$rv)
Rv
CC<-circumcenter.tetra(tetra)
CC
Xlim<-range(tetra[,1],Xp[,1],CC[1])
Ylim<-range(tetra[,2],Xp[,2],CC[2])
Zlim<-range(tetra[,3],Xp[,3],CC[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3],
phi =0,theta=40, bty = "g",
main="Scatterplot of data points \n and CC-vertex regions",
xlim=Xlim+xd*c(-.05,.05), ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lwd=2)
#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CC[1],CC[2],CC[3], labels=c("CC"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2;
D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lty = 2)
F1<-intersect.line.plane(A,CC,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2,
add=TRUE,lty = 2)
F2<-intersect.line.plane(B,CC,A,C,D)
L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3,
add=TRUE,lty = 2)
F3<-intersect.line.plane(C,CC,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4,
add=TRUE,lty = 2)
F4<-intersect.line.plane(D,CC,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5,
add=TRUE,lty = 2)
plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)