| rel.vert.std.triCM {pcds} | R Documentation |
The index of the CM-vertex region
in the standard equilateral triangle that contains a given point
Description
Returns the index of the vertex
whose region contains point p in standard equilateral triangle
T_e=T((0,0),(1,0),(1/2,\sqrt{3}/2))
with vertex regions are constructed with center of mass CM
(see the plots in the example for illustrations).
The vertices of triangle, T_e, are labeled as 1,2,3
according to the row number the vertex is recorded in T_e.
If the point, p, is not inside T_e, then the
function yields NA as output.
The corresponding vertex region is the polygon with the vertex, CM, and
midpoints of the edges adjacent to the vertex.
See also (Ceyhan (2005, 2010)).
Usage
rel.vert.std.triCM(p)
Arguments
p |
A 2D point for which |
Value
A list with two elements
rv |
Index of the vertex whose region contains point, |
tri |
The vertices of the triangle, |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2005).
An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications.
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.
Ceyhan E (2010).
“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
Ceyhan E (2012).
“An investigation of new graph invariants related to the domination number of random proximity catch digraphs.”
Methodology and Computing in Applied Probability, 14(2), 299-334.
See Also
rel.vert.basic.triCM, rel.vert.tri,
rel.vert.triCC, rel.vert.basic.triCC,
rel.vert.triCM, and rel.vert.basic.tri
Examples
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-20 #try also n<-40
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
rel.vert.std.triCM(Xp[1,])
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.std.triCM(Xp[i,])$rv)
Rv
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,asp=1,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".",col=1)
L<-matrix(rep(CM,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.03,.05)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))