| rel.vert.mid.int {pcds} | R Documentation |
The index of the vertex region in a middle interval that contains a given point
Description
Returns the index of the vertex
whose region contains point p in
the interval int=(a,b)=(vertex 1,vertex 2)
with (parameterized) center M_c associated with
the centrality parameter c \in (0,1);
vertices of interval are labeled as 1 and 2 according to their
order in the interval int.
If the point, p, is not inside int,
then the function yields NA as output.
The corresponding vertex region is the interval (a,b)
as (a,M_c) and (M_c,b)
where M_c=a+c(b-a).
See also (Ceyhan (2012, 2016)).
Usage
rel.vert.mid.int(p, int, c = 0.5)
Arguments
p |
A 1D point. The vertex region |
int |
A |
c |
A positive real number in |
Value
A list with two elements
rv |
Index of the vertex in the interval |
int |
The vertices of the interval as a |
Author(s)
Elvan Ceyhan
References
Ceyhan E (2012).
“The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data.”
Metrika, 75(6), 761-793.
Ceyhan E (2016).
“Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity.”
REVSTAT, 14(4), 349-394.
See Also
Examples
c<-.4
a<-0; b<-10; int = c(a,b)
Mc<-centerMc(int,c)
rel.vert.mid.int(6,int,c)
n<-20 #try also n<-40
xr<-range(a,b,Mc)
xf<-(int[2]-int[1])*.5
Xp<-runif(n,a,b)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.mid.int(Xp[i],int,c)$rv)
Rv
jit<-.1
yjit<-runif(n,-jit,jit)
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(Mc,0),main="vertex region indices for the points", xlab=" ",
ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*range(yjit),pch=".",cex=3)
abline(h=0)
points(Xp,yjit)
abline(v=c(a,b,Mc),lty = 2,col=c(1,1,2))
text(Xp,yjit,labels=factor(Rv))
text(cbind(c(a,b,Mc),.02),c("rv=1","rv=2","Mc"))